首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
admin
2022-08-12
12
问题
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。
选项
答案
当g(x)=0,x∈[a,b]时,有∫
a
b
g(x)dx=0,∫
a
b
f(x)g(x)dx=0,此时任意ξ∈[a,b],有∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx=0。 当g(x)≠0时,因为g(x)在[a,b]上不变号,所以必有对任意x∈[a,b],g(x)>0或g(x)<0。不妨设x∈[a,b]时,g(x)>0。根据最大值最小值定理知f(x)在[a,b]上连续,则必取到最小值m和最大值M,所以对任意x∈[a,b],都有m≤f(x)≤M,进而有,mg(x)≤f(x)g(x)≤Mg(x),可以推出 ∫
a
b
mg(x)dx=∫
a
b
g(x)dx≤∫
a
b
f(x)g(x)dx≤∫
a
b
Mg(x)dx=∫
a
b
g(x)dx。 因为∫
a
b
g(x)dx>0,可得m≤∫
a
b
f(x)g(x)dx/∫
a
b
g(x)dx≤M,根据介值定理可知,至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx/∫
a
b
g(x)dx=f(ξ),即∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。 综上,至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。结论得证。
解析
转载请注明原文地址:https://jikaoti.com/ti/3Mz9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
医学科学家证明,如果人的大脑皮层受损,就会丧失思维能力,没有意识。这说明()。
(1)设,抛物线y=x2一2过点(t,t2一2)的切线与x轴的交点为(g(t),0),求g(t).(2)定义数列{xn}如下:x0=2,xn+1=g(xn),n=0,1,2,…证明:(上述求方程根的近似值的方法称为牛顿切线法)
如下图所示,设0<a<b,函数f(x)在[a,b]上连续,在(a,b)可微且f(x)>0,f(x)=f(b)。设l为绕原点O可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点A(ζ,f(ζ))上,从直观上看。证明函数F(x)=在ζ处取得最大
设A是一个m×n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。
证明
随机试题
原子吸收分光光度分析中光源的作用是()。
A.鳞状细胞癌B.腺癌C.未分化癌D.腺棘皮癌
下列关于流动比率和速动比率的说法,错误的是()。
我国对房地产管理实行()管理方式。
Anempire"onwhichthesunneversets"isthebestwaytodescribetheBritainduringthereignof______.
在实际的教学中,我们该如何处理好教师主导与学生主体的关系。
请用“灯光”“树林”“人才”“烟草”和“热潮”这几个词编一段故事。要有故事情节,词的顺序可以颠倒。
刑事强制工作是指公安机关依据《刑事诉讼法》对犯罪分子所采取的拘传、取保候审、监视居住、拘留和逮捕的工作。()
下列叙述中,不属于设计准则的是()。
Johnwas(irritated)bythenecessityforpoliteconversation.
最新回复
(
0
)