首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2019-08-21
22
问题
下列命题正确的是( ).
选项
A、f(x)在点x
0
连续的充要条件是f(x)在点x
0
可导
B、若fˊ(x)=x
2
(偶函数),则f(x)必是奇函数
C、若
(常数),则fˊ(0)=a
D、若
,则fˊ(0)=-1
答案
D
解析
由连续、可导及奇偶性定义便可得结论.
解:由导数定义知
故应选(D).
错例分析:有的学生选择(B)选项,这是不对的.如取fˊ(x)=1+cos x.则
令C=1,则f(x)=x+sin x+1,显然fˊ(x)=1+cos x是偶函数,但f(x)=x+sin x+1不是奇函数.还有的同学选(A)项,也是错误的,如取f(x)=|x|,则f(x)在x
0
=0处连续.但由于fˊ
-
(0)=-1≠1=fˊ
+
(0),所以fˊ(0)不存在,即f(x)在x
0
=0处不可导.选择(C)项同样是错误的,因为不知道f(0)的值就不可能求出fˊ(0).
转载请注明原文地址:https://jikaoti.com/ti/3MERFFFM
0
考研数学二
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
设一球面过点M(1,2,3)且与各坐标面相切,求此球面方程.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设将上述关系式表示成矩阵形式;
设f(χ)为n+1阶可导函数,求证:f(χ)为n次多项式的充要条件是f(n+1)(χ)≡0,f(n)(χ)≠0.
设x→a时,f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小;②若n>m,则是x一a的n一m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=______。
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值。
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
随机试题
在小组工作的中期转折阶段,小组成员关系走向亲密化,小组内部权力竞争开始。此时,社会工作者的工作重点是()。
胎儿腹横向且身体两端距骨盆人口距离大致相等时,其矫正正确的是
患儿,2岁。每天喝秋梨膏,并且每晚含奶头才能入睡。上前牙唇侧和第1乳磨牙颊面和面龋损。本病例诊断是
《突发公共卫生事件应急条例》规定,医疗卫生机构应当对传染病做到
水利工程建设项目按其功能和作用分为()。
契约自我执行有赖于完善的制度安排。中国悠久的商业传统不幸被计划经济_________,建设市场经济时日尚短,相关制度安排_________。在契约遭到违反时,必须有外部的调停者、仲裁者直至司法强制力来支持。填入划横线部分最恰当的一项是:
请用150字以内的文字概括给定资料的主要内容。要求语言简练、精确。材料3中关于圆明园环境整治工程听证会,关于对圆明园的“整治”,支持和反对者都合法,请用200字以内的篇幅谈谈自己的看法。可在指出其中问题的基础上展开论述。
UNIX操作系统的文件系统是________。
现有以下程序代码:PrivatesubForm_click()Staticsasintegers=s+1text4
Inordertoworkheretheforeignerneedsaworkpermit,whichmustbeapplied【C1】______byhisprospectiveemployer.Theprobl
最新回复
(
0
)