首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
admin
2018-09-25
39
问题
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有
其中Ω(f)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫
0
t
r
2
f(r)dr+tf(r)=2t
4
,且f(0)=0.
选项
答案
D(t)={(x,y)|x
2
+y
2
≤t
2
},∑(t)={(x,y,z)|x
2
+y
2
+z
2
=t
2
},L(t)={(x,y)|x
2
+y
2
=t
2
},且 [*] =∫
0
2π
dθ∫
0
π
sinφdφ∫
0
t
r
2
f(r)dr=4π∫
0
t
r
2
f(r)dr, [*] =∫
0
2π
dθ∫
0
t
r
2
f(r)dr=2π∫
0
t
r
2
f(r)dr, [*] 由题设条件,有 47π∫
0
t
r
2
f(r)dr+2πtf(t)=2π∫
0
t
r
2
f(r)dr+4πt
4
, 即 ∫
0
t
r
2
f(r)dr+tf(f)=2t
4
. 又t≠0,则 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/2Q2RFFFM
0
考研数学一
相关试题推荐
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
求曲线积分I=∫Cxydx+yzdy+xzdz,C为椭圆周:x2+y2=1,x+y+z=1,逆时针方向.
与直线L1:及直线L2:都平行且经过坐标原点的平面方程是____________.
设曲线积分∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ)计算沿
求曲面积分I=xz2dydz-sinxdxdy,其中S为曲线(1≤z≤2)绕z轴旋转而成的旋转面,其法向量与z轴正向的夹角为锐角.
函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明
考察级数2,其中an=,p为常数.(Ⅰ)证明:(n=2,3,4,…);(Ⅱ)证明:级数当P>2时收敛,当P≤2时发散.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻B点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
设f(x)在[a,b]上可导,且f′+(a)与f′-(b)反号,证明:存在ξ∈(a,b)使得f′(ξ)=0.
随机试题
Somepeoplelikedrinkingcoffee,forithas______effects.
下列有关城市总体布局消防安全要求的表述中,正确的是()。
结账工作由计算机自动进行数据处理,每月可多次进行。 ( )
根据《中华人民共和国海关法》的规定,海关可以行使下述()权力。
MMPI共有10个临床量表,其中英文缩写Pd指的是()。
你单位派你到基层调研,某媒体将你的个人意见发表出去,你怎么处理?
Doyouknowthatallhumanbeingshavea"comfortablezone"regulatingthedistancetheystandfromsomeonewhentheytalk?This
标志着中国人民抗日救亡运动新高潮到来的是
在建立ID号为999,不给定VLAN名的VLAN时,系统自动使用的缺省VLAN名是()。
TheIndonesianPresidenthas______intheprovinceofAceh.
最新回复
(
0
)