首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
admin
2018-05-21
18
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加, 所以当x<x
0
时,有[*]故f(x
0
)≤f(x)≤[*]f(x
0
), 令x→x
0
-
,由夹逼定理得f(x
0
-0)=f(x
0
); 当x>x
0
时,有[*]f(x
0
)≤f(x)≤f(x
0
), 令x→x
0
+
,由夹逼定理得f(x
0
+0)=f(x
0
),故f(x
0
-0)=f(x
0
+0)=f(x
0
), 即f(x)在x=x
0
处连续,由x
0
的任意性得f(x)在[0,1]上连续.
解析
转载请注明原文地址:https://jikaoti.com/ti/20VRFFFM
0
考研数学一
相关试题推荐
[*]
已知三阶矩阵A的特征值为0,±1,则下列结论中不正确的是()
设f(x,y)为连续函数,D={(x,y)|x2+y2≤t2},则
(1)比较∫01|lnt|[ln(1+t)n]dt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由.(2)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限.
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
方程y"’+2y"=x2+xe—2x的特解形式为()
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
设f(x,y)=3x+4y一ax2一2ay2一2bxy,试问参数a,b满足什么条件时,f(x,y)有唯一的极大值?(x,y)有唯一的极小值?
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
随机试题
麻黄素对受体的作用是
描述疾病流行强度的指标有
患儿男6岁,发病3日,低热乏力,颌下淋巴结肿大,口内下前牙唇侧牙龈出血,口中带有血腥味,口臭明显、疼痛
石斛不具有的功效是()。
患者,男性,22岁,急性转移性右下腹痛8小时,体温38.5℃,腹肌紧张,右下腹压痛、反跳痛,结肠充气实验(+),该患者首选的治疗方法是
债券结算中,实时处理只能以()方式进行交收。
法律在代理上的援助范围不包括()。
一般资料:钟某,女性,17岁,高中二年级学生,因害怕别人害自己多次从学校逃跑,内心极其恐惧,由家长送来咨询。案例介绍:钟某平时住校,学习刻苦,成绩较好。三个月前开始不知什么原因经常缺课,老师和同学发现后很关心,询问原因,钟某说上课时总是听到别人议
8个甲级队应邀参加比赛,先平均分成两组,分别进行单循环赛,每组决出前两名,再由每组的第一名,另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,整个赛程的比赛场数是( )。
钱穆先生曾说:“做学问可训练做人。”初听不免令人困惑,“做学问”是少数人从事的职业,并非人人可为,更非人人必为,除了享受其研究成果,可谓与大多数人的生活毫无干系。不过,若我们把思路放开,钱先生此言也不难理解。这里的关键在“训练”二字:治学的道理、方法,许多
最新回复
(
0
)