首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,Ax=0有通解k1ξ1+k2ξ2,Aξ3=ξ3,则存在可逆矩阵P,使得P-1AP=其中P是 ( )
设A是3阶矩阵,Ax=0有通解k1ξ1+k2ξ2,Aξ3=ξ3,则存在可逆矩阵P,使得P-1AP=其中P是 ( )
admin
2018-08-22
30
问题
设A是3阶矩阵,Ax=0有通解k
1
ξ
1
+k
2
ξ
2
,Aξ
3
=ξ
3
,则存在可逆矩阵P,使得P
-1
AP=
其中P是 ( )
选项
A、[ξ
1
,ξ
2
,ξ
1
+ξ
3
]
B、[ξ
2
,ξ
3
,ξ
1
]
C、[ξ
1
+ξ
2
,一ξ
2
,2ξ
3
]
D、[ξ
1
+ξ
2
,ξ
2
一ξ
3
,ξ
3
]
答案
C
解析
由题意,知ξ
1
,ξ
2
是A的对应于特征值λ
1
=0的线性无关的特征向量,ξ
3
是A的对应于特征值λ
2
=1的特征向量,且注意下列概念:
①A的同一个特征值对应的特征向量的非零线性组合,如λ=0对应的特征向量是ξ
1
,ξ
2
,则k
1
ξ
1
+k
2
ξ
2
为非零向量时,仍是A的对应于该特征值的特征向量.λ=1对应的特征向量是ξ
3
,则kξ
3
仍是λ=1对应的特征向量,k为任意非零常数.
②对不同特征值λ
1
≠λ
2
,则对应的特征向量的线性组合(如ξ
1
+ξ
3
,ξ
2
一ξ
3
等)不再是A的特征向量.
③P中的特征向量排列次序应与对角阵中λ的排列次序一致.
由上述三条知应选(C),因(C)中,ξ
1
+ξ
2
,一ξ
2
仍是对应于特征值λ=0的特征向量,2ξ
3
仍是对应于特征值λ=1的特征向量,且与对角矩阵中特征值的排列次序一致.故应选(C).
(A)中ξ
1
+ξ
3
不是特征向量,(B)中ξ
3
,ξ
1
对应的特征值的排列次序不一致,(D)中ξ
2
一ξ
3
不是特征向量,故都是错误的.
转载请注明原文地址:https://jikaoti.com/ti/1xWRFFFM
0
考研数学二
相关试题推荐
设f(x,y)在点(0,0)处连续,且其中a,b,C为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性
设函数f(x)连续,且∫0xtf(2x—t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值·
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2)
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(1997年)设则g[f(χ)]为【】
设y=exsinx,求y(n).
若二阶常系数齐次线性微分方程y"+py’+qy=0的一个特解为y=2excosx,则微分方程y"+py’+qy=exsinx的特解形式为().
随机试题
一个具体的管理目标或指标的制定,需要参照的信息有()
肾蒂主要结构的排列关系,由前向后依次为
下列药物中,均有固精缩尿之功,可治遗精滑精、尿频遗尿等证的是()
以下不可以提供汽车贷款的的贷款人包括()。
企业将融资租入固定资产视同自有固定资产核算,所体现的会计核算的一般原则是( )。
快速消费品企业需要及时了解市场需求,改进产品质量,宜采取()。
下列有关文学常识的表述,不恰当的一项是:
简述房地产评估的程序。(天津财经大学,2011)
后备副本的主要用途是______。
A、他们早就离婚成路人了B、他们都很忙,很少见面C、他们各自有自己的空间D、她不愿意过问他的事情C
最新回复
(
0
)