首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ab|x一t|ψ(t)dt的图形 ( )
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ab|x一t|ψ(t)dt的图形 ( )
admin
2015-08-14
94
问题
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫
a
b
|x一t|ψ(t)dt的图形 ( )
选项
A、在(a,b)内为凸
B、在(a,b)内为凹
C、在(a,b)内有拐点
D、在(a,b)内有间断点
答案
B
解析
先将φ(x)利用|x—t|的分段性分解变形,有 φ(x)=∫
a
x
(x一t)ψ(t)dt+∫
x
b
(t一x)ψ(t)dt=s∫
a
x
ψ(t)dt一∫
a
x
tψ(t)dt+∫
x
b
tψ(t)dt—x∫
x
b
ψ(t)dt.
因为ψ(t)在[a,b]上连续,所以φ(x)可导,因而答案不可能是(D).为讨论其余三个选项,只需求出φ"(x),讨论φ"(x)在(a,b)内的符号即可.因
φ’(x)=∫
a
x
ψ(t)dt一∫
x
b
ψ(t)dt,
φ"(x)=2ψ(x)>0,x∈[a,b],故y=φ(x)的图形为凹.直选(B).
转载请注明原文地址:https://jikaoti.com/ti/uCDRFFFM
0
考研数学二
相关试题推荐
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设y=f(x)=,(Ⅰ)讨论f(x)在x=0处的连续性;(Ⅱ)求f(x)的极值点与极值。
设a1=(a1,a2,a3)T,a2=(b1,b2,b3)T,a3=(c1,c2,c3)T则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0相交于一点的充分必要条件是().
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设f(x,y)=(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛。
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx;(Ⅲ)
随机试题
Johnson’swritingisconsideredpedanticandabstrusebecauseitisfilledwithobscurereferencesandbafflingdigressions.
按照净制要求,以茎入药需要去残根的是()
患者,女性,26岁。于2013年4月20日因“宫外孕、出血性休克”急诊手术。人手术室时,神志清,T37.2℃,P92次/分,R23次/分,BP100/60mmHg,硬膜外麻醉成功后,突然出现意识丧失,面色苍白,口唇四肢末梢严重发绀,脉搏、心音、血压
作为期货交易所内部机构的结算机构,所具有的优点是()。
()是学习者持续一贯的带有个性特征的学习方式,是学习策略和学习倾向的总和。
下列关于证据采信的说法中哪一个是错误的?()
Organisedvolunteeringandworkexperiencehaslongbeenavitalcompaniontouniversitydegreecourses.Usuallyitisleftto【C
【B1】【B5】
A、Itspowerbillreaches£9millionayear.B、Itsellsthousandsoflightbulbsaday.C、Itsuppliespowertoanearbytown.D、I
Mostofushaveformedanunrealisticpictureoflifeonadesertisland.Wesometimesimagineadesertislandtobeasortof【C
最新回复
(
0
)