首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)记Ω(R)={(x,y)|x2+y2≤R2},I(R)=e-(x2+y2)dxdy,求I(R); (Ⅱ)证明:∫-∞+∞e-x2dx=
(Ⅰ)记Ω(R)={(x,y)|x2+y2≤R2},I(R)=e-(x2+y2)dxdy,求I(R); (Ⅱ)证明:∫-∞+∞e-x2dx=
admin
2018-06-27
10
问题
(Ⅰ)记Ω(R)={(x,y)|x
2
+y
2
≤R
2
},I(R)=
e
-(x
2
+y
2
)
dxdy,求
I(R);
(Ⅱ)证明:∫
-∞
+∞
e
-x
2
dx=
选项
答案
(Ⅰ)首先用极坐标变换求出I(R),然后求极限[*]I(R). 作极坐标变换x=rcosθ,y=rsinθ得 I(R)=∫
0
2π
dθ∫
0
R
e
-r
2
rdr=2π([*]e
-r
2
)|
0
R
=π(1-e
-R
2
). 因此,[*] (Ⅱ)因为e
-x
2
在(-∞,+∞)可积,则∫
-∞
+∞
e
-x
2
dx=[*]∫
-R
R
e
-x
2
dx. 通过求∫
-R
R
e
-x
2
dx再求极限的方法行不通,因为∫e
-x
2
dx积不出来(不是初等函数).但可以估计这个积分值.为了利用[*]e
-(x
2
+y
2
)
dxdy,我们仍把一元函数的积分问题转化为二元函数的重积分问题. (∫
-R
R
e
-x
2
dx)=∫
-R
R
e
-x
2
dx∫
-R
R
e
-y
2
dy=[*]e
-(x
2
+y
2
)
dxdy. 其中D(R)={(x,y)||x|≤R,|y|≤R}.显然I(R)≤[*]e
-(x
2
+y
2
)
dxdy≤[*], 又[*],于是 [*](∫
-R
R
e
-x
2
dx)
2
=(∫
-∞
+∞
e
-x
2
dx)
2
=π.
解析
转载请注明原文地址:https://jikaoti.com/ti/1pdRFFFM
0
考研数学二
相关试题推荐
设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于
微分方程y"=2y’+2y=e2的通解为________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
试证明:当x>0时,存在θ(x)∈(0,1),使得
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=__________.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aii=∑λi,所以a+a+a=6+0+0→a=2.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3-4x32为标准形.
随机试题
“意思自治原则”包含的内容有()
A、对流免疫电泳B、火箭电泳C、免疫电泳D、免疫固定电泳E、区带电泳在电场作用下,抗原在含定量抗体的琼脂中定向泳动的是
A、微静脉B、腔静脉C、毛细血管D、微动脉E、主动脉血管中血流速度最慢是在
下列各项中,属于报表格式设置的具体内容的有()。
林某是代理记账公司专职从业人员,在其为客户提供的下列服务中,符合会计职业道德要求的有()。
在学生组织语言的过程中发挥决定性作用的是()。
蚂蚁无声无息的构成了一个奇妙的昆虫世界,它们有组织、有分工、有种族、有“军队”,甚至有“国家”。蚂蚁以结队而行、分工奇特和行为多样等种种方式来【】环境,在各个生态系统中充当“捕食者”、“清道夫”、“护林员”、“播种机”、“挖土机”和“运输队”
如何评价文艺复兴?
《小巴黎人报》
语句ofstreamf("SALARY.DAT",ios::applios::binary);的功能是建立流对象f,试图打开文件SALARY.DAT并与之连接,并且
最新回复
(
0
)