设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy。 (Ⅰ)设M(x,y)为区域D上的一个点,问h(x,y),在该点沿平面上什么方向的方

admin2018-05-25  63

问题 设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy。
    (Ⅰ)设M(x,y)为区域D上的一个点,问h(x,y),在该点沿平面上什么方向的方向导数最大。若记此方向导数的最大值为g(x0,y0),试写出g(x0,y0)的表达式;
    (Ⅱ)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点,也就是说,要在D的边界曲线x2+y2一xy=75上找出使(Ⅰ)中的g(x,y)达到最大值的点,试确定攀登起点的位置。

选项

答案(Ⅰ)函数h(x,y)在点M处沿该点的梯度方向 [*]={一2x0+y0,一2y0+x0}。 方向导数的最大值是gradh(x,y)[*]的模,即 g(x0,y0)=[*]。 (Ⅱ)求g(x,y)在条件x2+y2一xy一75=0下的最大值点与求g2(x,y)=(y一2x)2+(x一2y)2=5x2+5y2一8xy在条件x2+y2一xy一75=0下的最大值点等价。这是求解条件最值问题,用拉格朗日乘数法。构造拉格朗日函数 L(x,y,λ)=5x2+5y2一8xy+λ(x2+y2一xy一75), 则有 [*] 联立(1),(2)解得y=一x,λ=一6或y=x,λ=一2。 若y=一x,则由(3)式得3x2=75,即x=±5,y=[*]5。 若y=x,则由(3)式得x2=75,即x=±[*]。 于是得可能的条件极值点 M1(5,一5),M2(一5,5),M[*]。 现比较f(x,y)=g2(x,y)=5x2+5y2—8xy在这些点的函数值,有 f(M1)=f(M2)=450,f(M3)=f(M4)=150。 因为实际问题存在最大值,而最大值又只可能在M1,M2,M3,M4中取到。所以g2(x,y)在M1,M2取得边界线D上的最大值,即M1,M2可作为攀登的起点。

解析
转载请注明原文地址:https://jikaoti.com/ti/1g2RFFFM
0

最新回复(0)