首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-01-15
56
问题
设f(x),g(x)在[a,b]上二阶可导,g
’’
(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g
’
(ξ
1
)=g
’
(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g
’
(x)在[ξ
1
,ξ
2
]运用罗尔定理,可得g
’’
(ξ
3
)=0(ξ
3
∈(ξ
1
,ξ
2
))。 因已知g
’’
(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g
’
(x)-f
’
(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使F
’
(ξ)=f(ξ)g
’’
(ξ)-f
’’
(ξ)g(ξ)=0,即[*]。
解析
转载请注明原文地址:https://jikaoti.com/ti/0vBRFFFM
0
考研数学三
相关试题推荐
(02年)假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求(1)X和Y的联合概率分布;(2)D(X+Y).
(04年)设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别是来自总体X和Y的简单随机样本,则_______.
(12年)设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤1}=【】
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】
(05年)设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
现有奖券100万张,其中一等奖1张,奖金5万元;二等奖4张,每张奖金2500元;三等奖40张,每张奖金250元;四等奖400张,每张奖金25元,而每张奖券2元,试计算买一张奖券的平均收益.
已知3阶方阵A的行列式|A|=2,方阵B=其中Aij为A的(i,j)元素的代数余子式,求AB.
设A是n阶可逆方阵,将A的第i行与第j行对换后所得的矩阵记为B.(1)证明B可逆;(2)求AB-1.
设函数f(x)连续.(1)求初值问题的解y(x),其中a是正常数.(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1一e—ax).
随机试题
男性,56岁。30分钟前心前区压榨样痛,突然出现意识丧失、抽搐,听诊心音消失,脉搏触不到,血压为零,诊断为心搏骤停。根据病理解剖发现,大部分心脏性猝死的重要病因是
急性乳腺炎常见的致病菌为
计算机网络技术涉及:
在下列索赔事件中,承包商不能提出费用索赔的是()
下列工作底稿资料中,属于管理类工作底稿的是()。
在对商业银行客户进行信用风险识别时,以下关于现金流量分析的说法错误的是()。
民族自治地方的自治机关依法行使自治权。根据我国宪法规定,下列哪一机关不享有自治条例、单行条例制定权?
使用VC++2010打开考生文件夹下modil中的解决方案。此解决方案的项目中包含一个源程序文件modi1.c。在此程序中,函数fun的功能是:计算并输出k以内最大的10个能被13或17整除的自然数之和。k的值由主函数传入,若k的值为500,则函数的值为4
•YouwillhearthechairpersonoftheTechnologicalSocietymakinganannouncementattheendofameeting.•Asyoulisten,fill
A、Theyalwaysvetoitdown.B、Theypayenoughattentiontoit.C、Theymakegooduseofit.D、Theydon’tcaremuchaboutit.D本题考
最新回复
(
0
)