首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是n维非零列向量,A=αβT+βαT,证明:r(A)≤2.
设α,β是n维非零列向量,A=αβT+βαT,证明:r(A)≤2.
admin
2021-11-25
26
问题
设α,β是n维非零列向量,A=αβ
T
+βα
T
,证明:r(A)≤2.
选项
答案
r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
),而r(αβ
T
)≤r(α)=1,r(βα
T
)≤r(β)=1, 所以r(A)≤r(αβ
T
)+r(βα
T
)≤2.
解析
转载请注明原文地址:https://jikaoti.com/ti/0RlRFFFM
0
考研数学二
相关试题推荐
把x→0﹢时的无穷小量α=∫0x2tantdt,β=∫0xcost2dt,γ=sint3dt按从高阶到低阶排列,则正确的排列次序是()
根据k的不同取值情况,讨论方程x3-3x+k=0实根的个数。
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设平面区域D(t)={(x,y)|0≤x≤y,0
设D为有界闭区域,z=f(χ,y)在D上二阶连续可偏导,且在区域D内满足:≠0,则().
设g(x)有连续的导数,g(0)=0,g’(0)=a≠0,f(x,y)在点(0,0)的某邻域内连续,则=()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
A.一次常用量B.1日常用量C.3日常用量D.7日常用量为急诊患者开具的麻醉药品控缓释制剂,每张处方不得超过
简述行政处罚的基本原则。
在沟通网络的具体形态中,其速度、满意度、失真度等介于链式沟通与轮式沟通之间的是()
A.肾上腺素B.AChC.去甲肾上腺素D.肽类物质
滴虫性阴道炎的典型白带为:细菌性阴道病的典型白带为:
男性,18岁,左手背被玻璃划伤1小时,急诊检查发现:手背尺侧多处不规则皮肤裂伤,深达皮下,环指、小指掌指关节呈屈曲位,不能主动伸直。检查伤口见局部红肿、压痛,搏动感,穿刺抽出脓性液体,处理方案是
以下哪种因素不影响膜脂的流动性()。
国内信用保险的险种主要有()
EverymajoriPhoneupdateushersinnewfeatures.Herearesomeunder-the-radartipsthatyoumighthavemissed.Didyoukno
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料材料一
最新回复
(
0
)