已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u. 求f(u,v)的表达式和极值.

admin2022-09-22  65

问题 已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u
求f(u,v)的表达式和极值.

选项

答案由[*]=2(2x-y)e-y对x积分得g(x,y)=∫2(2x-y)e-ydx+φ(y)=2e-y(x2-xy)+φ(y), 由f(u,0)=u2e-u可得f(x,0)=g(x,x)=φ(x)=x2e-x, 故g(x,y)=2 e-y(x2-xy)+y2e-y. 令x=u,y-x=v,,则f(u,v)=2 e-(u+v)[u2-u(u+v)]+(u+v)2e-(u+v) =-2uv e-(u+v)+(u+v)2 e-(u+v) =e-(u+v)(u2+v2). 又因为[*]=-e-(u+v)(u2+v2)+e-(u+v)2u=-e-(u+v)(u2+v2-2u)2=0, [*]=-e-(u+v)(u2+v2)+e-(u+v)2v=-e-(u+v)(u2+v2-2v)=0, 解得[*]或者[*] A=f”uu=(2-2u)e-(u+v)-(2u-u2-v2)e-(u+v)=(2-4u+u2+v2)e-(u+v), B=f”uv=-2v e-(u+v)-(2u-u2-v2)e-(u+v)=(-2v-2u+u2+v2)e-(u+v), C=f”vv=(2-2v)e-(u+v)-(2v-u2-v2)e-(u+v)=(2-4v+u2+v2)e-(u+v), 当u=0,v=0时,A=2,B=0,C=2,则AC-B2>0,又A>0,故(0,0)是极小值点,极小值f(0,0)=0;当u=1,v=1时,A=0,B=-2e-2,C=0,则AC-B2<0,故(1,1)不是极值点.

解析
转载请注明原文地址:https://jikaoti.com/ti/0BhRFFFM
0

最新回复(0)