首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组AX=β有解但不唯一, (1)求a; (2)求可逆矩阵P,使得P一1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
设方程组AX=β有解但不唯一, (1)求a; (2)求可逆矩阵P,使得P一1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
admin
2016-10-24
41
问题
设
方程组AX=β有解但不唯一,
(1)求a;
(2)求可逆矩阵P,使得P
一1
AP为对角阵;
(3)求正交阵Q,使得Q
T
AQ为对角阵.
选项
答案
(1)因为方程组AX=β有解但不唯一,所以|A|=0,从而a=一2或a=1. 当a=一2时, [*]=2<3,方程组有无穷多解; 当a=1时, [*] 方程组无解,故a=一2. (2)由|λE一A|=λ(λ+3)(λ一3)=0得λ
1
=0,λ
2
=3,λ
3
=一3. 由(0E一A)X=0得λ
1
=0对应的线性无关的特征向量为ξ
1
=[*] 由(3E一A)X=0得λ
2
=3对应的线性无关的特征向量为ξ
2
=[*] 由(一3E一A)X=0得λ
3
=一3对应的线性无关的特征向量为ξ
3
=[*] [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/zvSRFFFM
0
考研数学三
相关试题推荐
作半径为r的球的外切正圆锥,问圆锥的高h等于多少时,才能使圆锥的体积最小?最小体积为多少?
设Ω=[a,b]×[c,d]×[l,m],证明
选用适当的坐标计算下列三次积分:
A是n阶矩阵,且A3=0,则().
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10);
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
求的最大项.
设求
随机试题
布雷斯悖论现象是指在一个交通网络上增加一条路段不仅没有减少交通延滞,反而使整个交通网络上所有出行者的出行时间都增加的现象。根据上述定义,下列属于布雷斯悖论现象的是:
神经递质,激素和细胞因子可通过下列哪条共同途径传递信息
关于宫内节育器的并发症,哪项是正确的
下列哪项不是急性肾功能衰竭的发病机制
患儿,男,5岁。因发热咳嗽2天而来就诊。门诊时症见:发热,体温达38.8℃,咳嗽痰多,色黄而黏,难以咯出,喉间痰鸣辘辘,口渴,烦躁,哭闹不安,小便短黄,大便干结。舌红,苔黄腻,脉滑数。本病应诊断为
初步划分的农用地级别应具有明显的()收益,否则应重新进行调整计算。
贷款合同双方当事人发生合同纠纷时,既可以向仲裁机构申请仲裁,也可以向人民法院起诉。()
小干扰法不仅适用于电力系统运行静态稳定性的分析,也适用于电力系统暂态稳定性的分析。()
()提出了“先行组织者”的概念。
如图,AD⊥BC,CE⊥AB,垂足为D、E,CE、AD交于H,AE=4,EB=3,问CH长为:
最新回复
(
0
)