设f(a)=f(b)=0,l∫abf2(x)dx=1,f’(x)∈C[a,b].求∫abxf(x)f’(x)dx;证明:∫abf’2(x)dx∫abx2f2(x)dx≥1/4.

admin2022-10-25  23

问题 设f(a)=f(b)=0,l∫abf2(x)dx=1,f’(x)∈C[a,b].求∫abxf(x)f’(x)dx;证明:∫abf’2(x)dx∫abx2f2(x)dx≥1/4.

选项

答案abxf(x)f’(x)dx=1/2∫abxdf2(x)=x/2f2(x)|ab-1/2∫abf2(x)dx=-1/2.∫abxf(x)f’(x)dx=-1/2→(∫abxf(x)f’(x)dx)2=1/4≤∫abf’2(x)dx∫abx2f2(x)dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/ykGRFFFM
0

最新回复(0)