设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2 求矩阵A的特征值;

admin2017-12-23  54

问题 设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα123,Aα213,Aα312
求矩阵A的特征值;

选项

答案因为α1,α2,α3线性无关,所以α123≠0,由A(α123)=2(α123),得A的一个特征值λ1=2; 又由A(α12)=-(α12),A(α23)=- (α23),得A的另一个特征值为λ2=-1.因为α1,α2,α3线性无关,所以α12与α23也线性无关,所以λ2=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.

解析
转载请注明原文地址:https://jikaoti.com/ti/ygdRFFFM
0

最新回复(0)