设曲线y=a+x—x2,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.

admin2016-09-30  24

问题 设曲线y=a+x—x2,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.

选项

答案设曲线y=a+x—x与x3轴正半轴的交点横坐标为α,β(α<β),由条件得 一∫0α(a+x—x)dx=∫αβ(a+x—x3)dx,移项得 ∫0α(a+x一x3)dx+∫αβ(a+x—x3)dx=∫0β(a+x—x3)dx=0→β(4a+2β一β3)=0, 因为β>0,所以4a+2β一β3=0. 又因为(β,0)为曲线y=a+x—x3与x轴的交点,所以有 α+β一β3=0,从而有β=一3a→a一3a+27a3=0→a=一[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/yMPRFFFM
0

最新回复(0)