首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
admin
2016-10-20
34
问题
已知A,B均是3阶非零矩阵,且A
2
=A,B
2
=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
选项
答案
由于A
2
=A,则A的特征值只能是0或1,又因(A-E)A=0,A≠0,知齐次方程组(A-E)x=0有非零解,故|A-E|=0,即λ=1必是A的特征值.据AB=0,B≠0,得Ax=0有非零解,那么|0E-A|=|A|=0,故0必是A的特征值. 由于已知条件的对称性,0与1必是B的特征值.对于Aα=α,同时左乘矩阵B,得 Bα=B(Aα)=(BA)α=0α=0=0α, 所以α是矩阵B关于λ=0的特征向量.
解析
转载请注明原文地址:https://jikaoti.com/ti/y1xRFFFM
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设A是n×m矩阵,B是m×n矩阵,其中n
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
随机试题
书写药历是药师进行规范化药学服务的一项工作,下列内容一般不作为药历内容的是()。
关于强奸罪及相关犯罪的判断,下列哪一选项是正确的?
粗装修消防验收属于消防设施的()验收,建筑物尚不具备投入使用的条件。
2008年之前,做市商在纽交所被称为专家,专家的职能具体包括()。①竞价的组织者②经纪人职能③稳定市场职能④做市商职能
长江公司期末存货采用成本与可变现净值孰低计量,并且按单项存货计提存货跌价准备。存货跌价准备期初余额为0。2×17年12月31日,长江公司存货中包括:150件甲产品和50件乙产品,单位产品成本均为120万元。其中,150件甲产品签订有不可撤销的销售合同,每件
Onedaywhileagirlwaswalkinginthewoodsshefoundtwostarvingsongbirds.Shetookthemhomeandputtheminasmall【C11】_
某小区内业主共有的道路被物业公司划出停车位对外出租,其收益应该归________所有。
根据下面材料回答下列题。调查中被采访者有362人.那么都赞成者的人数比都不赞成者人数多()人。
Whatistheauthor’sattitudetowardsthe"popularbelief"mentionedinPara.1?Teachersencouragetheearlyuseofdictionarie
Dependingonwhichplayeryouask,the"Fevernova"ballthatsportsequipmentmakerAdidassaysprovidestheultimatesoccerexp
最新回复
(
0
)