首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维(n≥3)向量组α1,α2,α3线性无关,若向量组lα2-α1,mα3-2α2,α1-3α3线性相关,则m,l应满足条件_______.
设n维(n≥3)向量组α1,α2,α3线性无关,若向量组lα2-α1,mα3-2α2,α1-3α3线性相关,则m,l应满足条件_______.
admin
2018-12-21
32
问题
设n维(n≥3)向量组α
1
,α
2
,α
3
线性无关,若向量组lα
2
-α
1
,mα
3
-2α
2
,α
1
-3α
3
线性相关,则m,l应满足条件_______.
选项
答案
lm=6
解析
(lα
2
-α
1
,mα
3
-2α
2
,α
1
-3α
3
)=(α
1
,α
2
,α
3
)
(α
1
,α
2
,α
3
)C.
α
1
,α
2
,α
3
线性无关
r(α
1
,α
2
,α
3
)=3.
lα
2
-α
1
,mα
3
-2α
2
,α
1
-3α
3
线性相关
r(lα
2
-α
1
,mα
3
-2α
2
,α
1
-3α
3
)≤2
r(C)≤2
|C|=lm-6=0
lm=6.
转载请注明原文地址:https://jikaoti.com/ti/xtWRFFFM
0
考研数学二
相关试题推荐
(1994年)计算
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2002年)已知函数f(χ)在(0,+∞)上可导,f(χ)>0,f(χ)=1,且满足求f(χ).
(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.
(1991年)若连续函数f(χ)满足关系式f(χ)=∫02χf()dt+ln2则f(χ)等于
(2014年)(1)当χ→0+时,若lna(1+2χ),均是比χ高阶的无穷小,则a的取值范围是【】
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设f(χ,y)在点(a,b)的某邻域具有二阶连续偏导数,且f′y(a,b)≠0,证明由方程f(χ,y)=0在χ=a的某邻域所确定的隐函数y=φ(χ)在χ=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f′χ(a,b)=0,且当r(a,b)>0时,
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
随机试题
SLE病人,长期用皮质类固醇激素治疗,拟行乳腺癌根治术。术前应
自行排便一次.灌肠后又排便2次,应记录
我国《环境影响评价法》规定,对建设项目的环境影响评价实行(),建设单位应当组织编制相应的环境影响评价文件。
在罪数形态中,属于处断的一罪的是()。
John’sapplicationforadmissiontograduatestudiesintheSchoolofEducationhasbeenapproved.
Theideathatsomegroupsofpeoplemaybemoreintelligentthanothersisoneofthosehypothesesthatdarenotspeakitsname.
统一资源定位器http://www.ceiaec.org/index.htm中的www.ceiaec.org表示______。A.使用的协议B.网站的域名C.查看的文档D.邮件地址
A.Ford’sOpponentsB.TheAssemblyLineC.Ford’sGreatDreamD.TheEstablishmentoftheCompanyE.Ford’sBiggestC
Torecognizebusinessopportunityisvitalforallbusiness.Exploitingtheopportunityrequiresdecision-making.Managementmus
Usingacomputermayprotectagainstmemorylosslateinlife,aslongasyoualsomakesuretoexercise,anewstudysuggests.
最新回复
(
0
)