首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
admin
2018-04-18
55
问题
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’
y
(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:
f(a,b)=0,f’
x
(a,b)=0,
且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值.其中
选项
答案
y=φ(x)在x=a处取得极值的必要条件是φ’(a)=0.按隐函数求导法,φ’(x)满足 f’
x
(x,φ(x))+f’
y
(x,φ(x))φ’(x)=0. (*) 因b=φ(a),则有 f(a,b)=0, φ’(a)=[*]=0, 于是f’
x
(a,b)=0. 将(*)式两边对x求导得 f"
xx
(x,φ(x))+f"
xy
(x,φ(x))φ’(x)+[*][f’
y
(x,φ(x))]φ’(x)+f’
y
(x,φ(x))φ"(x)=0, 上式中令x=a,φ(a)=b,φ’(a)=0,得 [*] 因此当[*]>0时,φ"(a)<0,故b=φ(a)是极大值; 当[*]<0时,φ"(a)>0,故b=φ(a)是极小值.
解析
转载请注明原文地址:https://jikaoti.com/ti/vzdRFFFM
0
考研数学二
相关试题推荐
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是aTA-1a≠b.
(I)因为A~B,故其特征多项式相同,即|λE-A|=|λE-B|,(λ+2)[λ2-(x+1)λ+(x-2)]=(λ+1)(λ-2)(λ-y),令λ=0,得2(x-2)=2y,即y=x-2,令λ=1,得y=-2,从而x=0.[*]
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)x=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
设函数f(x,y)连续,则二次积分f(x,y)dy等于().
(2010年试题,23)设1707正交矩阵Q使QTTAQ为对角阵,若Q的第一列为.求a,Q.
已知53求A的特征值与特征向量,并指出A可以相似对角化的条件.
设正交阵Q,使得QTAQ=Q-1AQ=A,其中A是对角阵.
随机试题
涉及承租人、出租人和资本出借者三方当事人的租赁是__________。
二阶线性常系数齐次微分方程y”+2y=0的通解为________.
最可能病因是不能做诊断依据的检查是
热轧圆盘条、热轧光圆钢筋、热轧带肋钢筋和余热处理钢筋的钢筋原材料进场检验中,钢筋表面不得有(),表面的凸块和其他缺陷的深度和高度不得大于所在部位尺寸的允许偏差(带肋钢筋为横肋的高度)。
经审核符合要求的食品标签,由______颁发《进出口食品标签审核证书》。取得审核证书的食品标签,由______统一对外公布。()
下列业务需计入商业银行授信额度的是()。
在处理共产党与民主党派的关系上,毛泽东首倡的方针是()。
根据《物权法》的有关规定,下列权利可以设定抵押权的是()。
所有切实关心教员福利的校长,都被证明是管理得法的校长;而切实关心教员福利的校长,都首先把注意力放在解决中青年教员的住房上。因此,那些不首先把注意力放在解决中青年教员住房上的校长,都不是管理得法的校长。以下哪项是上述论证所必须假设的?
Neitherofthetwoyoungmenwhohadappliedforapositionintheuniversity______.
最新回复
(
0
)