首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令μn=f(μn-1)(n=1,2,…),μ0∈[a,b],证明:级数(μn+1一μn)绝对收敛.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令μn=f(μn-1)(n=1,2,…),μ0∈[a,b],证明:级数(μn+1一μn)绝对收敛.
admin
2017-08-31
23
问题
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f
’
(x)|≤q<1,令μ
n
=f(μ
n-1
)(n=1,2,…),μ
0
∈[a,b],证明:级数
(μ
n+1
一μ
n
)绝对收敛.
选项
答案
由|μ
n+1
一μ
n
|=|f(μ
n
)一f(μ
n-1
)|=|f
’
(ξ
1
)||μ
n
一μ
n-1
|≤q|μ
n
一μ
n-1
|≤q
2
|μ
n-1
-μ
n-2
|≤…≤q
n
|μ
1
一μ
0
| [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/vJVRFFFM
0
考研数学一
相关试题推荐
[*]
设函数f(μ)在(0,+∞)内具有二阶导数,且满足等式.若f(1)=0,f’(1)=1,求函数f(μ)的表达式.
(2001年试题,一)设y=e*(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________________.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z=h(t)-[2(x2+y2)]/[h(t)](设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130(厘米)的雪堆全部融化需多少小时?
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
设,试证明:an+1<an且
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
设S为平面x一2y+z=1位于第四卦限的部分,则
求矢量穿过曲面∑的通量,其中三为曲线绕z轴旋转一周所形成旋转曲面的外侧在1≤z≤2间部分.
随机试题
下列词语中没有错别字的一组是()
Treesareusefultoman【B1】______threeveryimportantways:theyprovidehim【B2】______woodandotherproduces;theyhelpto
功能清热解毒,消痈散结,利湿通淋的药物是
下述砌砖工程的施工方法,正确的表述是()。
Thebeautifulmountainvillage_________wespentourholidaylastyearislocatedin_________isnowpartofGuangxi.
水稻在我国的分布很广。()是我国水稻的主产区,占我国水稻种植总面积的90%以上。
邮件列表的两种基本形式是(42)。
表达式1+2+"hello"+8的值为( )。
Wheredoesthespeakermostlikelywork?
Thenewdrugwillnotbeputonthemarket_____ithasprovedsafeonhumans.
最新回复
(
0
)