首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
admin
2019-09-04
28
问题
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
选项
答案
令 [*] 则φ(x)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)-f(1), 由罗尔定理,存在ξ∈(1,2),使得φ’(ξ)=0, 而 [*] 故ξf’(ξ)-f(ξ)=f(2)-2f(1).
解析
转载请注明原文地址:https://jikaoti.com/ti/ujnRFFFM
0
考研数学三
相关试题推荐
已知试确定常数a,b,使得当x→0时,f(x)~axb.
设f(x)=ex2,f[φ(x)]=1一x,且φ(x)≥0,求φ(x)及其定义域.
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:A+B的特征值全大于a+b.
设3阶矩阵A与对角矩阵D=相似,证明:矩阵C=(A-λ1E)(A-λ2E)(A-λ3E)=O.
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1.2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα2=(Ar+2,1,…,Ar+2,n)Tαn-r=(An1,…,Ann
随机试题
治疗糖尿病酮症酸中毒时最应注意的电解质紊乱是
下列正,反定型结果正确的是
关于投融资项目和投融资服务项目的相对性,说法正确的有()。
承包单位只有收到项目监理部签署的《工程变更单》后,方可实施工程变更。
关于感官检验,下列说法正确的有()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
诚然,中国可以向其他国家输出治霾的技术经验,甚至______扩大中国的环保产业,可如果这些经验在国内都没有扎实落地,就不能______外国人不了解中国的治霾努力了。依次填入画横线部分最恰当的一项是()。
新民住宅小区扩建后,新搬入的住户纷纷向房产承销公司投诉附近机场噪声太大令人难以忍受。然而,老住户们并没有声援说他们同样感到噪声巨大。尽管房产承销公司宣称不会置住户的健康于不顾,但还是决定对投诉不准备采取措施。他们认为机场的噪声并不大,因为老住户并没有投诉。
讨论函数的连续性.
誰かがいるでしょう、電気がついて________から。
最新回复
(
0
)