首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)(x0-δ,x0)可导,又f’(x)=A(f’(x)=A),求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)(x0-δ,x0)可导,又f’(x)=A(f’(x)=A),求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x
admin
2018-06-15
27
问题
(Ⅰ)设f(x)在[x
0
,x
0
+δ)((x
0
-δ,x
0
])连续,在(x
0
,x
0
+δ)(x
0
-δ,x
0
)可导,又
f’(x)=A(
f’(x)=A),求证:f’
+
(x
0
)=A(f’
-
(x
0
)=A).
(Ⅱ)设f(x)在(x
0
-δ,x
0
+δ)连续,在(x
0
-δ,x
0
+δ)/{x
0
}可导,又
f’(x)=A,求证:f’(x
0
)=A.
(Ⅲ)设f(x)在(a,b)可导,x
0
∈(a,b)是f’(x)的间断点,求证:x=x
0
是f’(x)的第二类间断点.
选项
答案
(Ⅰ)f’
+
(x
0
) [*] =A.另一类似. (Ⅱ)由题(Ⅰ)[*]f’
+
(x
0
)=f’
-
(x
0
)=A[*]f’(x
0
)=A.或类似题(Ⅰ),直接证明 [*] (Ⅲ)即证[*]f’(x)中至少一个不ヨ.若它们均存在,[*]f’(x)=A
±
,由题(Ⅰ)[*]f’
±
(x
0
)=A
±
.因f(x)在x
0
可导[*]A
+
=A
-
=f’(x
0
)[*]f’(x)在x=x
0
连续,与已知矛盾.因此,x=x
0
是f’(x)的第二类间断点.
解析
转载请注明原文地址:https://jikaoti.com/ti/uS2RFFFM
0
考研数学一
相关试题推荐
(Ⅰ)求级数的收敛域;(Ⅱ)求证:和函数S(χ)=定义于[0,+∞)且有界.
已知方程组与方程组是同解方程组,试确定参数a,b,c.
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证:若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
设事件A,B满足AB=,则下列结论中一定正确的是()
将函数展开成x的幂级数,并指出其收敛区间.
设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则=____________
(1)取ε0=1,由[*]=0,根据极限的定义,存在N>,当n>N时,[*]收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]收敛(收敛级数添加有限项不改变敛散性).(2)根据(1),当n>N时,有0≤an<bn,因为[*]发散.
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
设L是正方形边界:|x|+|y|=a(a>0),则I=∫Lxyds=_____________,J=∫L|x|ds=_____________.
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
随机试题
试述官僚制的优缺点。
在阴阳学说中阴阳消长是量变形式,其基本形式有()。
《南京条约》被迫开放的通商口岸有()。①广州②天津③厦门④福州⑤南京⑥定海⑦宁波⑧上海
Itisawisefatherthatknowshisownchild,buttodayamancanboosthispaternal(fatherly)wisdom—oratleastconfirmtha
在秋审制度中,“案情属实,但危害不大,可减刑或留待下年再作决定”的称为:()
环境影响评价工程师职业资格按设定的类别进行登记,每名环境影响评价工程师申请登记的类别不得超过______个。
施工企业施工过程中,若工程进度款是按月结算,则第一步工作应是()。
下列不属于刑事警察主要职责的是()。
若有定义:intx=0,*p=&x;,则语句printf("%d\n",*p);的输出结果是
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】______shouldbemade
最新回复
(
0
)