首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组有解,证明:方程组无解。
已知方程组有解,证明:方程组无解。
admin
2017-01-21
40
问题
已知方程组
有解,证明:方程组
无解。
选项
答案
用A
1
,[*]分别表示方程组(1)与(2)的系数矩阵和增广矩阵,则[*]=A
2
T
。已知方程组(1)有解,故r(A
1
)=[*]。 又由于(b
1
,b
2
,…,b
m
,1)不能由(a
11
,a
21
,…,a
m1
,0),(a
12
,a
22
,…,a
m2
,0),…,(a
1n
,a
2n
,…,a
mn
,0)线性表示,所以 [*] 所以方程组(2)无解。
解析
转载请注明原文地址:https://jikaoti.com/ti/uHSRFFFM
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为求Anβ.
设A为n阶实对称矩阵,秩﹙A﹚=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)的
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
下列关于合并现金流量表编制的表述中,不正确的是()
骨软骨瘤的临床表现为
下列哪项检查是应用化学位移的原理实现的
住宅小区综合验收不合格的,由城市人民政府建设行政主管部门责令开发建设单位限期改正,由此发生的费用由开发建设单位承担。对违反规划要求,市政公用基础设施和公共设施不配套,工程质量低劣的,由验收小组提请有关部门依法查处。()
范围I系统的工频过电压水平一般不超过下列数值:110kV及220kV为(),35kV及66kV系统为(),3kV及10kV系统为():
甲、乙国有企业与另外9家国有企业拟联合组建设立“A有限责任公司”(以下简称A公司),公司章程的部分内容为:公司股东会除召开定期会议外,还可以召开临时会议,临时会议须经代表1/2以上表决权的股东,1/2以上的董事或1/2以上的监事提议召开。在申请公司设立登
旅游经营者应当就旅游活动中的下列事项,以明示的方式事先向旅游者作出说明或者警示()。
自我介绍的基本方式主要有()。
某小学要订购一批课外拓展图书,恰逢书店十周年庆,已知:(1)一次性订购同种类指定书籍不少于6000本,打5折;不少于2500本,打6折;不少于1500本,打7折;不少于1000本,打8折;少于1000本,打9折。(2)指定书籍种类包括:
Theproducedepartmentsofthefuturemaylooklikenothingonearth,andwithgoodreason.Chinesescientistshavebeengrowing
最新回复
(
0
)