[2011年] 已知f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf’’xy(x,y)dxdy.[img][/img]

admin2019-07-23  20

问题 [2011年]  已知f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf’’xy(x,y)dxdy.[img][/img]

选项

答案注意到f(x,y)的二阶导数连续,有f’’xy(x,y)=f’’yx(x,y),故 f’’xy(x,y)dy=f’’yx(x,y)dy=df’x(x,y), f’x(x,y)dx=df(x,y), 有I=∫01xdx∫01yf’’xy(x,y)dy=∫01xdx∫01ydf’x(x,y) =∫01[yf’x(x,y)|01—∫01f’x(x,y)dy]xdx =∫01f’x(x,1)xdx—∫01xdx∫01f’x(x,y)dy =0一∫01dy∫01xf’x(x,y)dx (因f(x,1)=0,故f’x(x,1)=0) =一∫01dy∫01xdf(x,y) =一∫01[xf(x,y)|01—∫01f(x,y)dx]dy =∫0101f(x,y)dxdy=[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/rwQRFFFM
0

最新回复(0)