首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=l,2,…,5.问: α4能否由α1,α2,α3,α5线性表出,说明理由;
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=l,2,…,5.问: α4能否由α1,α2,α3,α5线性表出,说明理由;
admin
2018-09-25
39
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记α
j
=[α
1j
,α
2j
,α
3j
,α
4j
]T,j=l,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;
选项
答案
α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程组的通解[2,1,0,1]
T
+k[1,-1,2,0]
T
知 α
5
=(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
, 故 α
4
=-(k+2)α
1
-(-k+1)α
2
-2kα
3
+α
5
.
解析
转载请注明原文地址:https://jikaoti.com/ti/ru2RFFFM
0
考研数学一
相关试题推荐
计算xyzdxdy,其中∑是x≥0,y≥0,x2+y2+z2=1的外侧(见图9.9).
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知齐次线性方程组同解,求a,b,c的值.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
随机试题
终宿主人兽共患寄生虫病
男,36岁。因左颊穿通伤就诊,关于颊部缺损的处理若缺损为全层洞穿性,应采取的措施是
以下哪项不属于压力源中的心理社会因素()。
借款企业不应将流动资金贷款用于()
下列各项不属于包装的功能的是()。
量值溯源等级图又称为()。
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
—I’mgoingtoLondonbyplanethedayaftertomorrow.—__________.
______holdtheVIPcardwillbefreeofchargeforthisservice.
WhoLives?WhoDies?WhoDecides?A)SomehavecalleditaRighttoDiecase.OthershavelabeleditaRighttoLivecase.Onegr
最新回复
(
0
)