首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
admin
2019-07-16
39
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
选项
答案
1 对α
1
,α
2
正交化.令ξ
1
=α
1
=(-1,2,-1)
T
ξ
2
=α
2
-[*]ξ
1
=1/2(-1,0,1)
T
再分别将ξ
1
,ξ
2
,α
3
单位化,得 [*] 那么Q为正交矩阵,且Q
T
AQ=A. 2 由于A只有一个重特征值λ
1
=λ
2
=0,故要求A的3个两两正交的特征向量,只须求出A的属于二重特征值0的两个相互正交的特征向量即可.由于 ξ
2
=α
1
+2α
2
=(-1,2,-1)
T
+2(0,-1,1)
T
=(-1,0,1)
T
也是A的属于特征值0的特征向量,且α
1
⊥ξ
2
,故 ξ
1
=α
1
=(-1,2,-1)
T
,ξ
2
=(-1,0,1)
T
,ξ
3
=α
3
=(1,1,1)
T
就是A的3个两两正交的特征向量(分别属于特征值0,0,3),再将它们单位化,即令e
j
=ξ
j
/‖ξ
j
‖(j=1,2,3), 则所求的正交矩阵Q可取为Q=[e
1
e
2
e
3
],且有Q
T
AQ=diag(0,0,3),以下具体求解同解1. 3 由实对称矩阵的性质,知A的属于特征值λ
1
=λ
2
=0的特征向量ξ=(x
1
,x
2
,x
3
)
T
与属于特征值λ
3
=1的特征向量α
3
=(1,1,1)
T
正交,即 x
1
+x
2
+x
3
=0 求解此齐次方程,得其基础解系——即属于λ
1
=λ
2
=0的两个线性无关特征向量为 ξ
1
=(-1,1,0)
T
,ξ
2
=(1,1,-2)
T
ξ
1
与ξ
2
已经正交,故ξ
1
,ξ
2
,α
3
为A的3个两两正交的特征向量,再将它们单位化,便得所求的正交矩阵可取为 [*] 且使Q
T
AQ=diag(0,0,3).
解析
转载请注明原文地址:https://jikaoti.com/ti/rtnRFFFM
0
考研数学三
相关试题推荐
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设,B≠O为三阶矩阵,且BA=0,则r(B)=______
设n为非零向量,η为方程组AX=0的解,则a=______,方程组的通解为______.
计算二重积分x2+4x+y2)dxdy,其中D是曲线(x2+y2)=a2(x2-y2)围成的区域.
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,所服从的分布.
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设(n=1,2,…;an>0,bn>0),证明:若级数发散.
设随机变量X服从参数为2的指数分布,证明:y=1-e-2X在区间(0,1)上服从均匀分布.
(2018年)已知实数a,b满足,求a,b.
设z=f[xg(y),x—y],其中f二阶连续可偏导,g二阶可导,求
随机试题
室性心动过速
下列哪项不符合脐带特点
慢性肾盂肾炎是指
影响问题解决的主要因素有()。
学生:读书
根据以下资料,回答以下问题。2011年1~8月,上海市接待“新马泰”游客()人次。
下列行为中,应以非法经营罪(不考虑数额或情节)定罪处罚的是()
在一个袋中装有a个白球,b个黑球,每次摸一球且摸后放回重复n次.已知摸到白球k次的条件下,事件B发生的概率为,则P(B)=_____________.
Inthe【B1】______annualBiblereadingmarathonthevolunteersreadreverentlyfrom【B2】______to_______________【B3】______.Atth
Gateswasbornand【B1】_____inSeattle.At,theageof14,hefoundedacomputerprogrammingcompanywiththreefriends,andthey
最新回复
(
0
)