首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2016-06-25
44
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以 n一r
1
≤n一r
21
, 故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
, 则(AX)
T
(AX)=[*]b
2
=0,必有b=b2=…=k=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由式子①,⑦得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解←→r(A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/rXzRFFFM
0
考研数学二
相关试题推荐
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx2(1-cost)dt.则当x→0时,f(x)是g(x)的().
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转一周所得的旋转体的体积.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤1/2(b-a)2.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得a/f′(ξ)+b/f′(η)=a+b
设函数f(x)满足关系f″(x)+f′2(x)=x,且f(0)=0,则().
设a0=1,a1=-2,a2=7/2,,an+1=-[1+1/(n+1)](n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
从点(2,0)引两条直线与曲线y=x3相切,求由此两条切线与曲线y=x3所围图形的面积S.
作半径为r的球的外切正圆锥,问此因锥的高h为何值时,其体积V最小,并求出该最小值.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
随机试题
某新建双线铁路,没十行车时速160km,其中某段路基8.5km,设计填挖平衡,大部分填筑高度3~5m,挖方段坡度不大,山体除表层外,部分为中风化砂岩,部分弱风化,沿线两侧有少量村庄,无重要建筑物,最大挖深12m。填筑区有两段各长500m的软弱地基,软弱层厚
不是定居人口腔的常见链球菌为
典型工作大纲的编写内容通常包括()。
为抑制2007年下半年开始出现的通货膨胀,中国人民银行可以采用公开市场操作来( )证券。
其地方进行拆迁,但遇上一钉子户,上级派你去,你怎么处理?
在看跌期权交易中,理论上损失无限、收益有限的是()。
distributionofsocialwealth
BetterControlofTBSeenIfaFasterCureIsFoundTheWorldHealthOrganizationestimatesthataboutone-thirdofallpeoplea
【S1】【S2】
A、OnFebruary17.B、OnFebruary7.C、OnJanuary17.D、OnJanuary7.B
最新回复
(
0
)