首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
设4阶矩阵A=(aij)不可逆,a12代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A伴随矩阵,则方程组A*x=0通解为
admin
2020-05-07
23
问题
设4阶矩阵A=(a
ij
)不可逆,a
12
代数余子式A
12
≠0,a
1
,a
2
,a
3
,a
4
为矩阵A的列向量组,A
*
为A伴随矩阵,则方程组A
*
x=0通解为
选项
A、x=k
1
a
1
+k
2
a
2
+k
3
a
3
,其中k
1
,k
2
,k
3
为任意常数
B、x=k
1
a
1
+k
2
a
2
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
C、x=k
1
a
1
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
D、x=k
1
a
2
+k
2
a
3
+k
3
a
4
,其中k
1
,k
2
,k
3
为任意常数.
答案
C
解析
由于A
12
≠0,r(A)=3,所以r(A
*
)=1,成基础解系.由
AA
*
=(a
1
,a
2
,a
3
,a
4
)
=0
可知,A
11
a
1
+A
12
a
2
+A
13
a
3
+A
14
a
4
=0,因为A
12
≠0,因此a
2
可由a
1
,a
3
,a
4
线性表示,
故a
1
,a
3
,a
4
线性无关.因为r(A)一r(a
1
,a
2
,a
3
,a
4
)=3,因此a
1
,a
3
,a
4
为基础解系,故应选C.
又因为A
*
A=|A|E=O,A的每一列a
1
,a
2
,a
3
,a
4
是A
*
x=0的解向量.只要找到是A
*
x=0的3个无关解就构成基础解系.
转载请注明原文地址:https://jikaoti.com/ti/rHARFFFM
0
考研数学二
相关试题推荐
[2005年]用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"一xy′+y=0,并求其满足y∣x=0=1,y′∣x=0=2的特解.
求初值问题的解.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶矩阵且,r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设f(x)为连续函数,且x2+y2+z2=
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>0)下的最大值是
(2008年试题,21)求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值.
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
当x→0时,ex一(ax2+bx+1)是x2高阶的无穷小,则()
随机试题
简述定性研究的特点。
感受器的一般生理特性有______、______、______、______。
高血压合并糖尿病肾病患者的治疗首选
背景资料:某施工单位承接了南方一座双向四车道分离式隧道施工,隧道穿越的地层有:石灰岩、页岩、泥灰岩,局部夹有煤层,该隧道穿越一向(倾)斜构造。隧道进出口围岩为Ⅴ级(差),洞内Ⅲ级和Ⅳ级呈间隔分布,局部为Ⅴ级。其中左线隧道进口桩号为K15+270,
某施工单位,承包了一条21.7km的二级公路,路面面层为沥青混凝土,基层为水泥稳定碎石。其中K22+300~K22+700路段,地面横坡陡于1:5,填方平均高度为12m左右。施工单位填筑前,对地基原状土进行了检测,土的强度符合要求,然后对地基进行了压实处理
控制权是能够对股东大会的决议产生重大影响或者能够实际支配公司行为的权力,其渊源是对公司的直接股权投资关系。( )
锌与人体在人类的食物中,不论是动物性食物还是植物性食物,几乎都含有锌,但品种不同含锌量有很大差异。一般情况下,动物性食物内锌的生物活性大,较易吸收和利用;植物性食物含锌少,且难以吸收和利用。这是因为谷物中含有较多的植酸(6-磷酸肌醇),能与锌结合
下列选项不属于有效地组织学习经验的主要准则的是
下列关于外国在华领事裁判权的说法中,正确的是()。
幂级数的收敛半径为__________.
最新回复
(
0
)