首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
admin
2018-11-20
16
问题
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
选项
答案
这4个向量线性相关[*]以它们为行(或列)向量构成的4阶行列式为0. [*] 得a=1/2.
解析
转载请注明原文地址:https://jikaoti.com/ti/pwIRFFFM
0
考研数学三
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
函数在区间[0,2]上的平均值为________.
已如A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E一A|中,命题成立的有().
假设总体X是连续型随机变量,其概率密度X1,X1,…,Xn是来自总体X的简单随机样本,统计量Yn=n[1一max{X1,X1,…,Xn}]的分布函数为Fn(x).求证Fn(x)一F(x)(一∞<x<+∞),其中F(x)是参数为2的指
试求心形线x=acos3θ,y=asin3θ与两坐标轴所围成的平面图形绕y轴旋转一周所得旋转体的体积.
设随机变量X服从几何分布,其分布列为P(X=k)=(1一p)k一1p=pqk一1,0<q<1,q=1一p,k=1,2,…,求E(X)与D(X).
设二维随机变量(X,Y)的分布函数为Ф(2x+1)Ф(2y—1),其中Ф(x)为标准正态分布函数,则(X,Y)~N________。
设随机变量X和Y均服从B(1,)且D(X+Y)=1,则X与Y的相关系数ρ=________。
行列式
随机试题
A.0.5mmB.1.5mmC.0.35~0.5mmD.1.0mmE.0.18~0.25mm贵金属铸造全冠颈部肩台的宽度是()
急性中毒的临床表现有()
A.突然仆倒,昏不知人,口吐涎沫,两目上视,匹肢抽搐,醒后头昏乏力B.突然仆倒,昏不知人,呼吸气粗,四肢厥冷,利时苏醒,醒后如常人C.项背强直,角弓反张,四肢抽搐,或见昏迷D.狂乱无知,喧扰不宁,躁妄打骂,不食不眠E.精神抑郁,沉默痴呆,语无伦次,
在长期借款的合同条款中,按照国际惯例,作为特殊性保护条款的是()。
三亚市某私营企业已注册经营两年,由于该经营地近期要拆迁,该经营企业于2011年2月3日将经营地点从原来街道搬迁到离原来街道不远的一条街道,两条街道同属于河西区内街道。税务机关2011年4月6日对辖区内的企业进行检查,发现该私营企业未办理税务登记,于是责令该
封闭式基金的投资者在封闭期限内要想变现,不可以采取的方式是( )。
最容易引发操作风险的业务环节是()。
设f(x)连续,且f’(0)>0,则存在δ>0,使得().
在数据库技术中,使用数据模型的概念描述数据库的语义和结构,一般可分为两类:概念数据模型和【】数据模型。
Ineveryoneofherpicturesshe______asenseofimmediacy.
最新回复
(
0
)