设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为 ( )

admin2019-05-12  33

问题 设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为    (   )

选项 A、1
B、2
C、3
D、4

答案D

解析 由于(A-E)B=A,可知当A可逆时,|A—E||B|≠0,故|B|≠0,因此B可逆,可知①是正确的.当A+B可逆时,|AB|=|A|B|≠0,故|B|≠0,因此B可逆,可知②是正确的.类似地,当B可逆时,A可逆,故|AB|=|A||B|≠0,因此AB可逆,故A+B也可逆,可知③是正确的.最后,由AB=A+B可知(A—E)B—A=0,也即(A—E)B一(A—E)=E,进一步有(A—E)(B一E)=E,故A—E恒可逆.可知④也是正确的.综上,4个命题都是正确的,故选D.
转载请注明原文地址:https://jikaoti.com/ti/ocoRFFFM
0

最新回复(0)