首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+2y2-x2y2在区域D={(x,y)|x2+y2≤4,y≥0,x≥0}上的最大值和最小值。
求函数f(x,y)=x2+2y2-x2y2在区域D={(x,y)|x2+y2≤4,y≥0,x≥0}上的最大值和最小值。
admin
2019-01-23
20
问题
求函数f(x,y)=x
2
+2y
2
-x
2
y
2
在区域D={(x,y)|x
2
+y
2
≤4,y≥0,x≥0}上的最大值和最小值。
选项
答案
先求D内的驻点及相应的函数值,由 [*] 得f(x,y)在D内有一个驻点[*]=2。 再求f(x,y)在D的边界上的最大值与最小值,D的边界由三部分组成: 一是线段Γ
1
:y=0,0≤x≤2,在Γ
1
上 f(x,y)=x
2
(0≤x≤2), 最小值为0,最大值为4。 二是线段Γ
2
:x=0,0≤y≤2,在Γ
2
上 f(x,y)=2y
2
(0≤y≤2), 最小值为0,最大值为8。 三是上半圆周Γ
3
:y
2
=4-x
2
(0≤x≤2),在Γ
3
上 f(x,y)=x
2
+2(4-x
2
)-x
2
(4-x
2
) =8-5x
2
+x
4
[*] h’(x)=[*],由h’(x)=0得x=0或x
2
=[*],且 [*] 于是f(x,y)在D的边界上的最大值为8,最小值为0。 最后通过比较知f(x,y)在D上的最大值为8,最小值为0。
解析
转载请注明原文地址:https://jikaoti.com/ti/oc1RFFFM
0
考研数学一
相关试题推荐
已知r(α1,α2,…,αs)=r(α1,α2,…,αs,β)=k,r(α1,α2,…,αs,β,γ)=k+1,求r(α1,α2,…,αs,β一γ).
考虑柱坐标系下的三重累次积分,I=3rdz.(I)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(I)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
把直线L的方程化为对称方程.
求下列微分方程的通解:(I)(x一2)dy=[y+2(x一2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y一7x)dx+(7y一3x)dy=0;(Ⅳ)一3xy=xy2.
设随机变量X服从参数为λ的指数分布,G(z)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
计算I=dxdy,其中D为曲线y=lnx与两直线y=0,y=(e+1)一x所围成的平面区域.
证明奇次方程a0x2n+1+a1x2n+…+a2nx+a2n+1=0一定有实根,其中常数a0≠0.
讨论级数的敛散性.
一自动生产包装机包装食盐,每袋重量服从正态分布N(μ,σ2),任取9袋测得其平均重量为=99.078,样本方差为s2=1.1432,求μ的置信度为0.95的置信区间.
随机试题
Youcan’tbe______carefulinmakingthedecisionasitwassuchacriticalcase.
Whipple三联征是指()
患者女,68岁。诊断为萎缩性胃炎、恶性贫血11年,每月给予维生素B12注射一次维持治疗。现因活动后乏力1个月来诊。检测血红蛋白89g/L,平均红细胞体积66f1,平均红细胞血红蛋白浓度25%,网织红细胞计数0.6%;血清铁蛋白12μg/L。患者的诊断最
男性患者,25岁。早晨起床时发现四肢乏力,双下肢明显,持续1天后症状消失,发病前有饮酒史,既往曾发作2次。每次发作腰穿查脑脊液常规、生化无异常发现。体检:四肢肌力Ⅲ级,肌张力降低,腱反射减低,感觉正常此病的发病机理目前认为和下列哪项有关
法的价值中包括哪些基本价值?()。
对长度为1800m、年平均日交通流量为6000peu/d的二级公路隧道进行定期检查,检查结果包括:①洞门拱部及其附近部位出现剥落,壁面存在严重渗水和挂冰,将会妨碍交通;②衬砌存在较多裂缝,但宽度变化较小,边墙衬砌背部存在空隙,有扩大可能;③路面大面积
设a为任意常数,则级数().
TheUnitedStates【C1】______alargepartoftheNorthAmericancontinent.ItsneighborsareCanada【C2】______thenorth,andMexico
Whydoesthewomansaythe"dinner"questionistough?
ItstartedwithanitchafterastrollonaCaribbeanbeach,butinjustafewdaysithaddevelopedintoacompletetravel【C1】_
最新回复
(
0
)