首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(x)= (Ⅰ)若f(x)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设(x)= (Ⅰ)若f(x)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
admin
2019-06-28
60
问题
设(x)=
(Ⅰ)若f(x)处处连续,求a,b的值;
(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
选项
答案
(Ⅰ)首先求出f(x).注意到 [*] 故要分段求出f(x)的表达式. 当|x|>1时, [*] 当|x|<1时, [*] =ax
2
+bx. 于是得 [*] 其次,由初等函数的连续性知f(x)分别在(-∞,-1),(-1,1),(1,+∞)上连续. 最后,只需考察f(x)在分界点x=±1处的连续性.这就要按定义考察连续性,分别计算: [*] 从而f(x)在x=1连续[*]f(1+0)=f(1-0)=f(1)[*]a+b=1=[*](a+b+1)[*]a+b=1; f(x)在x=-1连续[*]f(-1+0)=f(-1-0)=f(-1)[*]a-b=-1=[*](a-b-1)[*]a-b=-1. 因此f(x)在x=±1均连续[*]a=0,b=1.当且仅当a=0,b=1时f(x)处处连续. (Ⅱ)当(a,b)≠(0,1)时,若a+b=1(则a-b≠-1),则x=1是连续点,只有x=-1是间断点,且是第一类间断点;若a-b=-1(则a+b≠1),则x=-1是连续点,只有间断点x=1,且是第一类间断点;若a-b≠-1且a+b≠1,则x=1,x=-1均是第一类间断点.
解析
转载请注明原文地址:https://jikaoti.com/ti/oRLRFFFM
0
考研数学二
相关试题推荐
求微分方程y’’(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解。
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设对任意的x,总有φ(x)≤f(x)≤g(x),且[g(x)一φ(x)]=0,则f(x)()
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求实数a的值;
设函数=_______
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最大值与最小值.
随机试题
单纯性肥胖的发病因素有
六淫致病的共同特点有
某跨行业复合型建设项目,依照相关规定,其中有些分项目需编制环境影响报告书,有些需编制环境影响报告表,有些需填报环境影响评价表,在操作过程中,按照《建设项目环境影响评价分类管理名录》的规定,对该项目环境影响评价工作,应()。
在建设项目实施阶段的策划工作中,项目实施的组织策划的主要工作内容不包括()。
我国现行会计法律是()第九届全国人大常委会第十二次会议修订的《会计法》。
风险报告的职责主要表现有()。
甲公司是一家上市公司,主营业务为建筑节能产品生产及安装。下列选项中,表明该公司未能按照国家颁布的内控应用指引建立内控体系的有()。
债务重组的方式主要包括()。
下列叙述中正确的是
She______hisinvitationtodinnerasshewasonadiet.
最新回复
(
0
)