设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=E2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T.计算: Anβ.

admin2019-05-14  43

问题 设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是
   ξ1=E2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T
又β=[1,2,3]T.计算:
Anβ.

选项

答案利用Aξiiξi有[*],将β表成ξ1,ξ2,ξ3的线性组合.设 β=x1ξ1+x2ξ2+x3ξ3, 即[*] 解得[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/o9oRFFFM
0

最新回复(0)