首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量组β1,β2,β3为R3的一个基;
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 证明向量组β1,β2,β3为R3的一个基;
admin
2019-04-08
34
问题
[2015年] 设向量组α
1
,α
2
,α
3
是三维向量空间R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
证明向量组β
1
,β
2
,β
3
为R
3
的一个基;
选项
答案
由题设有 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
][*] 因[*],且α
1
,α
2
,α
3
线性无关,故β
1
,β
2
,β
3
线性无关,因而β
1
,β
2
,β
3
为R
3
的一个基.
解析
转载请注明原文地址:https://jikaoti.com/ti/nnoRFFFM
0
考研数学一
相关试题推荐
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
(2005年)设函数单位向量则
设矩阵则A3的秩为______。
随机试题
企业租赁经营的增值税纳税人是()
A.心脏宽径与胸廓横径之比B.心脏长径与胸廓横径之比C.心脏横径与胸廓横径之比D.≥0.51E.≥0.61心脏重度增大是指心胸比率
智力发展的关键期在
在运用成本法时最主要的有()。[2006年考题]
如果f(x)在x0可导,g(x)在x0不可导,则f(x)g(x)在x0()。
根据《城市规划编制办法》的规定,下列规划不能作为制定城市修建性详细规划的依据的是()。
甲飞机制造公司是全球航空航天业的领袖公司,也是世界上最大的民用和军用飞机制造商,公司成立至今已有上百年历史,客户对其品牌认知度高,在全球航空业市场上拥有颇高的占有率。拥有产品配方专利,资金充沛。根据以上信息,可以判断该企业拥有的无形资源包括()。
下列属于银行风险主观因素的是()。
重复保险与共同保险
Itisdifficulttoimaginewhatlifewouldbelikewithoutmemory.Themeaningsofthousandsofeverydayperceptions,thebases
最新回复
(
0
)