首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求常数a;
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解. 求常数a;
admin
2019-04-22
48
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.
求常数a;
选项
答案
因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量,故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关,即[*]=0,解得a=6.
解析
转载请注明原文地址:https://jikaoti.com/ti/naLRFFFM
0
考研数学二
相关试题推荐
判断下面级数的敛散性:
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=
求微分方程y2dx+(2xy+y2)dy=0的通解.
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
证明:r(A+B)≤r(A)+r(B).
设α,β都是n维列向量时,证明:①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设A是主对角元为0的四阶实对称阵,E是四阶单位阵,B=且E+AB是不可逆的对称阵,求A.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
随机试题
A.上鼻道B.中鼻道C.下鼻道D.总鼻道E.蝶筛隐窝
各类防护林、绿化带等生态建设应尽量避免占用耕地,确需占用的,必须按照()相当的原则履行补充耕地义务。
每股市价与每股收益的比率称为( )。
下列关于合营安排的相关表述中,正确的有()。
企业要实现可持续发展,必须解决的价值分配中的内在矛盾不包括()。
公共支出:政府公共部门在实施政府职能或从事经济活动等过程中,所消耗的一切费用的总和。根据以上定义,下列不属于公共支出的是()。
下列句子中,没有语病的一句是()。
4,16,72,529,()
甲、乙签订买卖合同约定,甲向乙支付定金6万元,任何一方违约,另一方都必须向对方支付违约金8万元。后乙违约,则甲获得()才能最大限度地保护自己的利益。
A、Thepaintingwasmakingfunofpeople.B、ThepaintingwasasymboloftheUS.C、Thepaintingexpressedanunderstandingofpeo
最新回复
(
0
)