首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数. (1)求f(x1,x2,x3)=0的解; (2)求f(x1,x2,x3)的规范形.
设实二次型f(x1,x2,x3)=(x1-x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数. (1)求f(x1,x2,x3)=0的解; (2)求f(x1,x2,x3)的规范形.
admin
2019-05-11
50
问题
设实二次型f(x
1
,x
2
,x
3
)=(x
1
-x
2
+x
3
)
2
+(x
2
+x
3
)
2
+(x
1
+ax
3
)
2
,其中a是参数.
(1)求f(x
1
,x
2
,x
3
)=0的解;
(2)求f(x
1
,x
2
,x
3
)的规范形.
选项
答案
(1)f(x
1
,x
2
,x
3
)=0 [*] 对上面这个齐次线性方程组的系数矩阵施行初等行变换: [*] 可见当a-2≠0,即a≠2时,该方程组只有零解x=0,即方程f=0只有零解x=0; 当a=2时,由 [*] 得方程组的通解、即方程f(x
1
,x
2
,x
3
)=0的解为 [*] (2)由(1)知当a≠2时,f是正定的,因此f的规范形是f=y
1
2
+y
2
2
+y
3
2
; 当a=2时,对f配方得 f=2(x
1
-[*]x
3
)
2
+[*](x
2
+x
3
)
2
, 可见f的秩为2,f的正惯性指数也是2,所以f的规范形是f=y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/nXnRFFFM
0
考研数学三
相关试题推荐
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设某箱装有100件产品,其中一、二、三等品分别为80件、10件和10件,现从中随机抽取一件,记Xi=(i=1,2,3).(1)求(X1,X2)的联合分布;(2)求X1,X2的相关系数.
求函数y=ln(x+)的反函数.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组似AX=b有两个不同解,η1η2,则下列命题正确的是().
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设X,Y为两个随机变量,E(X)=E(Y)=1,D(X)=9,D(Y)=1,且ρXY=,则E(X-2Y+3)=______.
[2005年]微分方程xy’+y=0满足初始条件y(1)=2的特解为___________.
随机试题
在20世纪50年代,我国第一个五年计划期间,中央在财政管理方面实行的办法是()
通常来说,影响汉字输入速度的因素有______。
为什么肝功能障碍时出现氨的清除不足?
方丝弓矫治器中弓丝的使用顺序错误的是
查询所有部门的折旧计提汇总表。
“进口日期”栏应填()。“征免性质”栏应填()。
关于管理控制层次和决策分析层次,下面说法中正确的是()。
学者F谈起自己在大学教授《中国文学史》和《古典文学作品选读》两门课的体会时说:“为什么要学这些课?因为这些作品里,集纳了大量国学精华,学了确实可以净化人的心灵。我认为,眼下的大学教育,需要重新重视传统文化课程。”在F看来,我们这个时代虽然崇尚科学
【B1】【B7】
Ahouseisthemostexpensivethingmostpeoplewilleverbuy.Veryfewpeoplehaveenoughmoneyoftheirowntobuyahome,so
最新回复
(
0
)