首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx经正交变换化为2y12-y22-y32,又知A*α=α,其中α=(1,1,-1)T,求此二次型的表达式.
已知三元二次型xTAx经正交变换化为2y12-y22-y32,又知A*α=α,其中α=(1,1,-1)T,求此二次型的表达式.
admin
2017-06-14
37
问题
已知三元二次型x
T
Ax经正交变换化为2y
1
2
-y
2
2
-y
3
2
,又知A
*
α=α,其中α=(1,1,-1)
T
,求此二次型的表达式.
选项
答案
由x
T
Ax=2y
1
2
-y
2
2
-y
3
2
知A的特征值是2,-1,-1,那么|A |=2. 从而1,-2,-2是A
*
的特征值,因此α是A
*
属于λ=1的特征向量,也就是A属于λ=2的特征向量. 设A属于λ=-1的特征向量是x=(x
1
,x
2
,x
3
)
T
,则因A是实对称矩阵,x与α正交,故 x
1
+x
2
-x
3
=0. 解出 x
1
=(1,-1,0)
T
, x
2
=(1,0,1)
T
. x
1
,x
2
是A属于λ=-1的特征向量. [*] 故 x
T
Ax=2x
1
x
2
—2x
1
x
3
—2x
2
x
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/mswRFFFM
0
考研数学一
相关试题推荐
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
[*]
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
设A,B皆为n阶矩阵,则下列结论正确的是().
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
设两个总体分别为X~N(μ1,σ12)和y~N(μ2,σ22),先假设检验总体X的均值不小于总体y的均值,则检验假设为()
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设f(x)在区间[0,1]上可微,且满足条件f(1)=,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式;(Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
随机试题
项王泣数行下,左右皆泣,莫能仰视。莫:
关于丹毒,下列叙述错误的是()
表虚自汗,易伤风邪者,最常用的方剂是
下列对重复性描述正确的是_____________。
造成内燃机损伤的原因是多方面的,其中最主要的是()。
根据基本民事法律制度的规定,下列各项中,属于双方民事法律行为的是()。
根据所给文字资料,回答91~95题2010年5月1日到10月31日,世博会在中国上海举行。自开幕以来,世博会的消费拉动效应初步显现。世博园区共有浦东和浦西两个片区,5月份的销售总额为4.13亿元,其中浦东片区的销售额占89.4%。园区5月份
甲、乙签订典权合同,约定甲将自己的房屋出典给乙,在出典期间,乙将房屋出租给丙。如果甲、乙二人没有约定收益的归属,则乙将房屋出租获得的租金归()。
(2014下集管)某信息系统开发公司承担了某企业的ERP系统开发项目,由项目经理老杨带领着一支6人的技术团队负责开发。由于工期短、任务重,老杨向公司申请增加人员,公司招聘了2名应届大学毕业生小陈和小王补充到该团队中。老杨安排编程能力强的小陈与技术骨干老张共
PrestigePropertiesNowAvailableFordiscerningcustomersseekinguniqueproperties,TheHillsRealEstateAgencyispleasedto
最新回复
(
0
)