首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求一个可逆矩阵P,使得P—1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求一个可逆矩阵P,使得P—1AP为对角矩阵.
admin
2018-08-03
19
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求一个可逆矩阵P,使得P
—1
AP为对角矩阵.
选项
答案
对于λ
1
=λ
2
=1,解方程组(E一B)x=0,得基础解系ξ
1
=(一1.1,0)
T
,ξ
2
=(一2,0,1)
T
;对应于λ
3
=4,解方程组(4E—B)x=0,得基础解系己=(0,1,1)
T
.令矩阵 Q=[ξ
1
ξ
2
ξ
3
]=[*] 则有 Q
—1
B Q=[*] 因Q
—1
BQ=Q
—1
C
—1
ACQ=(CO)
—1
A(CQ),记矩阵 P—CQ一[α
1
,α
2
,α
3
][*] =[一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
] 则有P
—1
AP=diag(1,1,4),故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/mV2RFFFM
0
考研数学一
相关试题推荐
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设A为n阶矩阵,k为常数,则(kA)*等于().
设A,B为两个n阶矩阵,下列结论正确的是().
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
求幂级数的和函数.
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
设A=,则A*的值.
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
随机试题
男性,62岁。肥胖,喜欢油腻,高盐饮食。体检发现体内甘油三酯1.9mmol/L,血浆胆固醇6.8mmol/L。经常感觉乏力,白天感觉困倦。经医生诊断为高脂血症。目前该患者应该注意的生活方式错误的是
女,2岁。自幼牛乳喂养,未按要求添加辅食,有时腹泻,逐渐消瘦。体检:身高80cm,体重7000g,皮下脂肪减少,腹壁皮下脂肪厚度<0.4cm,皮肤干燥、苍白,肌张力明显减低,肌肉松弛,脉搏缓慢,心音较低钝。
用要素饮食检查氮的排出量需收集
某患者明晨将行二尖瓣修复手术。夜班护士估计患者今晚最可能影响其睡眠的因素是
下列各项中,对钢筋混凝土梁斜截面破坏影响较大的是()。
在厦门港施工的某工地项目经理部跟踪到西北太平洋面上有一热带气旋在活动,并且得悉该工地于未来48h以内,遭遇风力可能达到6级以上。问题:为了赶工期,该工地项目经理考虑热带气旋不一定经过厦门港,命令施工船舶抓紧时间施工,请问项目经理这样做对吗?为
单据核销主要用于建立付款与应付款的核销记录。()
检察院领导让你组织一次法律知识竞赛。你怎么办?
Eachoftheninesquaresmarked1Ato3Cinthegridshouldincorporateallthelinesandsymbolsthatareshowninthesquares
A、Theywon’thaveanotherbreakuntilafterthefinalexams.B、It’llbeveryexcitingastheriverhassomerapidsthistimeof
最新回复
(
0
)