设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.

admin2019-03-21  44

问题 设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.

选项

答案对任意的c∈(0,1), 当x<c时,由exf(x)≤ecf(c)及e-f(x)≤e-f(x)得f(c)≤f(x)≤ec-xf(c), 令x→c-得f(c一0)=f(c); 当x>c时,由exf(x)≥exf(c)及e-f(x)≥e-f(c)得f(c)≥f(x)≥ec-xf(c), 令x→c+得f(c+0)=f(c), 因为f(c-0)=f(c+0)=f(c),所以f(x)在x=c处连续,由c的任意性得f(x)在(0,1)内连续.

解析
转载请注明原文地址:https://jikaoti.com/ti/kgLRFFFM
0

随机试题
最新回复(0)