首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
admin
2017-11-30
29
问题
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x
2
-2xy-4y
2
,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每吨还需支付排污费2万元。
(Ⅰ)在不限制排污费用支出的情况下,这两种产品的产量各为多少时总利润最大?总利润是多少?
(Ⅱ)当限制排污费用支出总和为6万元的情况下,这两种产品的产量各为多少时总利润最大?最大利润是多少?
选项
答案
(Ⅰ)总利润函数L(x,y)为 L(x,y)=R(x,y)-C(x,y)-x-2y=14x+32y-x
2
-2xy-4y
2
-36。 求L(x,y)的驻点,令 [*] 可解得唯一驻点x=4,y=3,且此时L(x,y)=40。 因驻点唯一,且实际问题必有最大利润,故计算结果表明,在不限制排污费用支出的情况下,当甲、乙两种产品的产量分别为x=4(吨)和y=3(吨)时,总利润达到最大值,且总利润是40万元。 (Ⅱ)求总利润函数L(x,y)在约束条件x+2y=6下的最大值,可用拉格朗日乘数法。引入拉格朗日函数 F(x,y,λ)=L(x,y)+λ(x+2y-6), 求F(x,y,λ)的驻点,令 [*] 可解得唯一驻点x=2,y=2,且此时L(x,y)=28。 因驻点唯一,且实际问题必有最大利润,故计算结果表明,当排污费用限于6万元的情况下,两种产品的产量均为2吨时总利润最大,最大利润为28万元。
解析
转载请注明原文地址:https://jikaoti.com/ti/jHKRFFFM
0
考研数学三
相关试题推荐
设f(x)为[a,b]上的函数且满足,x1,x2∈[a,b],则称f(x)为[a,b]上的凹函数,证明:若f(x)为[a,b]上的有界凹函数,则下列结论成立:①∈[0,1],f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),x1,x2
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
已知ξ=[1,1,一1]T是矩阵的一个特征向量.确定参数a,b及考对应的特征值λ;
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
设三元线性方程组有通解求原方程组.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
设A为m×n矩阵,以下命题正确的是().
设A,B为同阶方阵,举一个二阶方阵的例子说明(1)的逆命题不成立;
设u=U(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
若则a等于
随机试题
形而上学认为静止()。
Theroom______oftencleanedbythestudents.
下列哪项与原核生物DNA复制错误率低的原因有关
第一类杠杆的特点不包括
以下属于咨询(监理)工程师在施工过程中的质量控制范围的有()。
根据《合同法》,应当先履行债务的当事人,有确切证据证明对方()的,可以终止履行债务。
银行从业人员是一个较受公众关注的群体,银行个人理财从业人员在工作中要接受来自于()的监督。
社会工作研究的目的在于()。
根据学习的定义,下列属于学习的现象是()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
最新回复
(
0
)