首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f’"(ξ)=9.
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f’"(ξ)=9.
admin
2014-11-26
40
问题
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且
f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f’"(ξ)=9.
选项
答案
由[*]得f(0)=0,f’(0)=2.作多项式P(x)=Ax
3
+Bx
2
+Cx+D,使得P(0)=0,P’(0)=2,P(1)=1,P(2)=6, [*] 则φ(x)在[0,2]上连续,在(0,2)内可导,且φ(0)= φ(1)=φ(2)=0,因此φ(x)在[0,1]和[1,2]上都满足罗尔定理的条件,则存在ξ
1
∈(0,1),ξ
2
∈(1,2),使得φ’(ξ
1
)=φ’(ξ
2
)=0.又φ’(0)=0,由罗尔定理,存在η
1
∈(0,ξ
1
),η
2
∈(ξ
1
,ξ
2
),使得φ"(η
1
)=φ"(η
2
)=0,再由罗尔定理,存在ξ∈(η
1
,η
2
)[*](0,2),使得φ"(ξ)=0.而φ"’(x)=f"’(x)一9,所以f"’(ξ)=9.
解析
转载请注明原文地址:https://jikaoti.com/ti/j3cRFFFM
0
考研数学一
相关试题推荐
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充要条件为().
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,证明:B的列向量组线性无关.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由;
设A为n阶正定矩阵,证明:A-1仍为正定矩阵;
用配方法将二次型f(x1,x2,x3)=x12-3x32-2x1x2-2x1x3-6x2x3化为规范形,并写出变换矩阵.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组求方程组(*)的通解;
设区域D是由曲线y=x2与x=y2在第一象限内围成的图形,y=x将D分成D1与D2,如图1-14-1所示,f(x,y)为连续函数,则().
设u=,其中函数f,g具有二阶连续导数,求
讨论在点(0,0)处的连续性、可偏导性及可微性.
讨论在点(0,0)处的连续性、可偏导性及可微性.
随机试题
试述动平衡机的组成。
咀嚼时,牙齿实际承受的咀嚼力量为
患儿男,4岁,声嘶3个月来诊,门诊就诊查电子喉镜示声带前端淡红色、乳头状新生物,声带活动正常。入院后首选的治疗方案为
A.登革热B.黑热病C.莱姆病D.地方性斑疹伤寒E.流行性斑疹伤寒虱传播
甲是某产品的专利权人,乙于2008年3月1日开始制造和销售该专利产品。甲于2009年3月1日对乙提起侵权之诉。经查,甲和乙销售每件专利产品分别获利为二万元和一万元。甲因乙的侵权行为少销售100台,乙共销售侵权产品300台。关于乙应对甲赔偿的额度,下列哪一选
2015年1月1日,甲公司发行5年期一次还本、分期付息的可转换公司债券。该债券面值为1000万元,票面年利率为6%,利息按年支付,发行价格为1020万元,另支付发行费用80万元。债券发行1年后可转换为甲公司普通股股票。经计算,该项可转换公司债券负债成分的公
什么是动机?其主要功能包括哪些?
某项工程由甲、乙、丙三个工程队负责施工,他们将工程总量等额分成了三份同时开始施工。当乙队完成了自己任务的一半时,甲队派出一半的人力加入丙队工作。最后三队同时完成任务。则甲、乙、丙三队的施工速度比为:
下列命题属于历史唯心主义观点的是
【B1】【B10】
最新回复
(
0
)