首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
设A为n阶正定矩阵,证明: A-1仍为正定矩阵;
admin
2021-07-27
29
问题
设A为n阶正定矩阵,证明:
A
-1
仍为正定矩阵;
选项
答案
方法一 用合同法.依题设,已知A为n阶正定矩阵,因此必与单位矩阵合同。即存在可逆矩阵C,使得A=C
T
C,从而有A
-1
=C
-1
(C
T
)
-1
=C
-1
(C
-1
)
T
,知存在可逆矩阵Q=(C
-1
)
T
,使得A
-1
=Q
T
Q,因此,A
-1
仍为正定矩阵. 方法二 用特征值法.依题设,已知A为n阶正定矩阵,因此,A的全部特征值为正,即λ
i
>0(i=1,2,…,n),因为A
T
=A,则(A
-1
)
T
=(A
T
)
-1
=A
-1
,即A
-1
为对称矩阵,又A
-1
的特征值为A的特征值的倒数,即为λ
i
-1
>0,从而知A
-1
的特征值全部为正,因此,A
-1
仍为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/I6lRFFFM
0
考研数学二
相关试题推荐
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
已知向量组(I)α1,α2,α3,α4线性无关,则与(I)等价的向量组是()
求线性方程组的通解,并求满足条件x12=x22的所有解.
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
写出下列二次型的矩阵:
随机试题
下列对生物体生存和发展起重要作用的行为中,斯金纳更强调的是【】
影响毒物代谢的因素有()
A.青霉素B.红霉素C.甲硝唑D.万古霉素吸入性肺脓肿首选
Carryover主要是指
A.标本兼治B.三因制宜C.正治D.反治E.阴液或阳气突然大量丢失的病理状态实则泻之所属的治法是
FB是一家经销化工商品的公司,其经营网点遍布全国,为了应对激烈的市场竞争,该公司3年前投入1000多万元完成了信息系统的升级改造,大幅度提高了库存控制效率,帮助公司实现了供应链的多层级库存管理。过去,由于库存能力不足,当大批订货到港的时候,公司主
简述居民委员会和村民委员会的任务。
[*]
请打开考生文件夹下的解决方案文件proj2,该工程中含有一个源程序文件proj2.cpp,请将堆栈类的定义补充完整。使程序的输出结果为:Theelementofstackare:4321注意:请勿修改主函数main和其他函数中的任何内容,
Dylandidnotshowupinperson,butwrotealetterforhisgratitudetothefamouswriters.
最新回复
(
0
)