首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
admin
2017-08-07
26
问题
设A是n阶非零实矩阵(n>2),并且A
T
=A*,证明A是正交矩阵.
选项
答案
AA
T
=AA*=|A|E,因此只用证明|A|=1,就可由定义得出A是正交矩阵. 由于A≠0,有非零元素,设a
ij
≠0.则AA
T
的(i,i)位元素|A|=a
i1
2
+a
i2
2
+…+a
ij
2
+…+a
in
2
>0,从而AA
T
≠0. 对等式AA
T
=|A|E,两边取行列式,得|A|
2
=|A|
n
,即|A|
n-2
=1.又由|A|>0,得出|A|=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/heVRFFFM
0
考研数学一
相关试题推荐
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求X与y的相关系数ρxy
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求A的特征值与特征向量;
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.若α,β线性相关,则rA
随机试题
双平面Simpson法测量左心室收缩功能包括下列哪个平切面
女性,46岁,20年前分娩时曾有过1次癫痫发作史。之后每年仅发作1~2次,因此未坚持规律服药。今日下班回家途中突然意识丧失,四肢抽搐,牙关紧闭,心率增快,血压升高,瞳孔散大。持续20秒后,肌肉开始出现强直和松弛交替。患者的发作目前属于
进行公路隧道工程质量评定时,隧道行车道宽度的允许偏差为±10mm。()
不属于股权筹资优点的是()。
下列说法中不正确的有()。
当事人拒绝履行已经发生法律效力的民事判决时,另一方当事人可以申请法院强制执行。下列各项中,属于法院可以采取强制执行措施的有()。
“七月流血事件”后出任俄国临时政府总理的是()。
SQL的SELECT语句中,“HAVING”用来筛选满足条件的
Afewcommonmisconceptions.Beautyisonlyskin-deep.One’sphysicalassetsandliabilitiesdon’tcountallthatmuchinamana
Whilefashionisthoughtofusuallyinrelationtoclothing,itisimportanttorealizethatitcoversamuchwiderdomain.Iti
最新回复
(
0
)