(I)设f(x)在(0,+∞)可导,f’(x)>0(x∈(0,+∞)),求证f(x)在(0,+∞)单调上升. (Ⅱ)求证:在(0,+∞)单调上升,其中n为正数. (Ⅲ)设数列,求xn.[img][/img]

admin2019-01-25  27

问题 (I)设f(x)在(0,+∞)可导,f’(x)>0(x∈(0,+∞)),求证f(x)在(0,+∞)单调上升.
(Ⅱ)求证:在(0,+∞)单调上升,其中n为正数.
(Ⅲ)设数列,求xn.[img][/img]

选项

答案(I)对[*] 0<x1<x2<+∞,在[x1,x2]上可用拉格朗日中值定理得,[*]ξ∈(x1,x2)∈(0,+∞)使得 f(x2)一f(x1)=f’(ξ)(x2一x1)>0 => f(x2)>f(x1) => f(x)在(0,+∞)↑. (Ⅱ)令g(x)=lnf(x)=-[*] ln(nx+1)(x>0),考察 [*] => g(x)在(0,+∞)↑=>f(x)=eg(x)在(0,+∞)↑. (Ⅲ)用(Ⅱ)的结论对xn进行适当放大与缩小 [*] 即[*] 由[*] 因此 [*]xn=1.

解析
转载请注明原文地址:https://jikaoti.com/ti/g41RFFFM
0

最新回复(0)