设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的( ).

admin2019-05-15  32

问题 设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的(    ).

选项 A、高阶无穷小
B、低阶无穷小
C、同阶但非等价无穷小
D、等价无穷小

答案D

解析 F(x)=∫0xf(x-t)dt=一∫0xf(x-t)d(x-t)0xf(μ)dμ,G(x)==1,选(D).
转载请注明原文地址:https://jikaoti.com/ti/fFoRFFFM
0

随机试题
最新回复(0)