设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T. 计算:(1)Anξ1;(2)Anβ.

admin2018-09-25  23

问题 设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是
    ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T
又β=[1,2,3]T
计算:(1)Anξ1;(2)Anβ.

选项

答案(1)因Aξ11ξ1,于是Anξ11nξ1,故Anξ1=1.ξ1= [*] (2)利用Aξiiξi,有Anξiinξi将β表成ξ1,ξ2,ξ3的线性组合.设 β=x1ξ1+x2ξ2+x3ξ3, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/eu2RFFFM
0

最新回复(0)