设函数f(x)在[0,2π]上连续可微,f’(x)≥0,证明:对任意正整数n,有|∫02πf(x)sinnxdx|≤[f(2π)-f(0)].

admin2023-01-06  19

问题 设函数f(x)在[0,2π]上连续可微,f’(x)≥0,证明:对任意正整数n,有|∫0f(x)sinnxdx|≤[f(2π)-f(0)].

选项

答案因为f’(x)≥0,所以f(0)≤f(2π),从而f(2π)-f(0)≥0. 由∫02xf(x)sinnxdx=-1/n∫0f(x)d(cosnx) =-1/nf(x)cosnx|0+1/n∫0f’(x)cosnxdx =-1/n[f(2π)-f(0)]+1/n∫0f’(x)cosnxdx得 |∫0f(x)sinnxdx|≤1/n[f(2π)-f(0)]+1/n∫0|f’(x)cosnx|dx ≤1/n[f(2π)-f(0)]+1/n∫0f’(x)dx=2/n[f(2π)-f(0)].

解析
转载请注明原文地址:https://jikaoti.com/ti/e22iFFFM
0

相关试题推荐
随机试题
最新回复(0)