首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(
设向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(
admin
2018-02-07
29
问题
设向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
对矩阵(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)作初等行变换,有 [*] 当a≠一1时,行列式|α
1
,α
2
,α
3
|=a+1≠0,由克拉默法则可知线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解,此时向量组(Ⅱ)可由向量组(Ⅰ)线性表示。同理,由行列式|β
1
,β
2
,β
3
|=6≠0,可知向量组(Ⅰ)也可由向量组(Ⅱ)线性表示。向量组(Ⅰ)与(Ⅱ)等价。 当a=一1时,有 [*] 因为r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),所以线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由α
1
,α
2
,α
3
线性表示。向量组(I)与(Ⅱ)不等价。 综上所述,当a≠一1时,向量组(Ⅰ)与(Ⅱ)等价;当a=一1时,向量组(Ⅰ)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://jikaoti.com/ti/dSdRFFFM
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 A
求下列隐函数的导数(其中,a,b为常数):(1)x2+y2-xy=1(2)y2-2axy+b=0(3)y=x+lny(4)y=1+xey(5)arcsiny=ex+y
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
作x2+(y-3)2=1的图形,并求出两个y是x的函数的单值支的显函数关系.
设A为n阶可逆矩阵,则下列结论正确的是().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设y=e-x是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
随机试题
某新建双线铁路,没十行车时速160km,其中某段路基8.5km,设计填挖平衡,大部分填筑高度3~5m,挖方段坡度不大,山体除表层外,部分为中风化砂岩,部分弱风化,沿线两侧有少量村庄,无重要建筑物,最大挖深12m。填筑区有两段各长500m的软弱地基,软弱层厚
不是定居人口腔的常见链球菌为
典型工作大纲的编写内容通常包括()。
为抑制2007年下半年开始出现的通货膨胀,中国人民银行可以采用公开市场操作来( )证券。
其地方进行拆迁,但遇上一钉子户,上级派你去,你怎么处理?
在看跌期权交易中,理论上损失无限、收益有限的是()。
distributionofsocialwealth
BetterControlofTBSeenIfaFasterCureIsFoundTheWorldHealthOrganizationestimatesthataboutone-thirdofallpeoplea
【S1】【S2】
A、OnFebruary17.B、OnFebruary7.C、OnJanuary17.D、OnJanuary7.B
最新回复
(
0
)