首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2017-12-29
36
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 接着再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g"(ξ
3
)=0成立,这与题设条件g"(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)—g(x)f’(x),由题设条件得,函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即f(ξ)g"(ξ)一f"(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/dOKRFFFM
0
考研数学三
相关试题推荐
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
积分=()
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(A)g(1).
幂级数的收敛域为________.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
设数列{xn}由递推公式确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
设数列{xn}由递推公式xn=(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证xn存在,并求此极限.
随机试题
A.壁细胞B.主细胞C.潘氏细胞D.杯状细胞E.颈黏液细胞能分泌内因子的细胞
防己具有的功效是
肛裂的疼痛特点是()。
呋塞米安体舒通
冲出法拔除下颌阻生智齿多用于
患者壮年男性,因胃、十二指肠溃疡急性穿孔合并腹膜炎而症见:上腹部持续性剧痛,腹胀,拒按,伴发热恶寒,恶心呕吐,大便干结,小便黄赤,舌红苔黄腻,脉洪数。其证型是()
在其他因素不变的条件下,标的物价格的波动率越大,期权权利金越小。( )
()是基于财务指标的战略控制方法。
在规章制度和重大事项决定实施过程中,如果规章制度损害劳动者权益的,劳动者可以据此解除劳动合同,用人单位应当向劳动者支付经济补偿。()
材料:郑老师为了上好《认识常见岩石》一课,精心制作了PPT,并准备了几种岩石标本和三张挂图。课前郑老师将这些教具摆放、悬挂好后,马上吸引了许多学生围观。课上他展示了岩石标本,因标本过小,后面的同学伸长脖子也看不清。后来他打开PPT,因PPT页数过多,他不
最新回复
(
0
)