首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
admin
2019-06-28
40
问题
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
选项
答案
f(x)的定义域为(0,+∞),[*] 由f’(x)=lnx+1=0,得驻点为x=[*]为f(x)的极小值点,也为最小值点,最小值为[*] (1)当k>[*]时,函数f(x)在(0,+∞)内没有零点; (2)当k=[*]时,函数f(x)在(0,+∞)内有唯一零点x=[*] (3)当0<k<[*]时,函数f(x)在(0,+∞)内有两个零点,分别位于[*]内.
解析
转载请注明原文地址:https://jikaoti.com/ti/d7LRFFFM
0
考研数学二
相关试题推荐
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上问的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明结论。
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=_______,b=_______
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=_______.
已知非齐次线性方程组有三个线性无关的解。证明方程组系数矩阵A的秩r(A)=2;
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
[2005年]设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
随机试题
Sheopenedhermouthtosaysomething,butitwasatthatmoment_______thewaiterreturnedwiththeirfood.
A.向所在地省级药品监督管理部门报送年度需求计划B.向所在地市级药品监督管理部门报送年度需求计划C.经所在地省级药品监督管理部门批准D.经所在地市级药品监督管理部门批准食品、食品添加剂、化妆品、油漆等非药品生产企业需要使用咖啡因作为原料的,应当
根据公司法规定,有限责任公司的股东会在通过一些特别决议时,必须经代表2/3以上表决权的股东通过。下列各项中,哪些决议必须经代表2/3以上表决权的股东通过()。
股份有限公司采用溢价发行股票方式筹集资本,其“股本”科目所登记的金额是()。
下列各项中,依法不得收购A上市公司股份的是()。
手机:移动硬盘:存储
甲公司与乙村村委会开办的经济开发公司共同出资设立丙公司,生产新型化工原料。由于资金紧缺未建污水处理池,丙公司将生产废水直接排人小河。村民黄某听说此废水经处理可以代替氨肥使用,即购买了多个大铁罐收集等待出售,因铁罐腐烂,废液渗入院中水井,引起全家中毒。因废水
下列有语法错误的赋值语句是
在宏的表达式中要引用报表repo1上的控件text1,可以使用的引用式是()。
A、Thestoriesprobablyweren’ttrue.B、Tomdoesn’tusuallytellfunnystories.C、She’ssurprisedTomwassoseriouslastnight.
最新回复
(
0
)