首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f′(x)在[0,1]上可导,f(0)=0,|f′(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
设f′(x)在[0,1]上可导,f(0)=0,|f′(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
admin
2022-08-19
29
问题
设f′(x)在[0,1]上可导,f(0)=0,|f′(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
选项
答案
因为f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,从而|f(x)|在[0,1]上 连续,故|f(x)|在[0,1]上取到最大值M,即存在x
0
∈[0,1],使得|f(x
0
)|=M. 当x
0
=0时,则M=0,所以f(x)≡0,x∈[0,1]; 当x
0
≠0时, M=|f(x
0
)|=|f(x
0
)-f(0)|=|f′(ξ)|x
0
≤|f′(ξ)|≤1/2|f(ξ)|≤M/2, 其中ξ∈(0,x
0
),故M=0,于是f(x)≡0,x∈[0,1].
解析
转载请注明原文地址:https://jikaoti.com/ti/cWfRFFFM
0
考研数学三
相关试题推荐
(1)设,求a,b的值.(2)确定常数a,b,使得ln(1+2x)+=x+x2+o(x2).(3)设b>0,且,求b.
求
=_______.
设x∫0x+y∫0x≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:(1)存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;(2)存在ξ∈(0,3),使得f’’(ξ)=2f’(ξ)=0.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
设A,B为随机事件,且0<P(A)<1,则下列说法正确的是()
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,并有=0,求f’(x)—一2x2+∫0xg(x一t)dt的拐点.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
函数在区间上的平均值为_____________.
随机试题
书写药历是药师进行规范化药学服务的一项工作,下列内容一般不作为药历内容的是()。
关于强奸罪及相关犯罪的判断,下列哪一选项是正确的?
粗装修消防验收属于消防设施的()验收,建筑物尚不具备投入使用的条件。
2008年之前,做市商在纽交所被称为专家,专家的职能具体包括()。①竞价的组织者②经纪人职能③稳定市场职能④做市商职能
长江公司期末存货采用成本与可变现净值孰低计量,并且按单项存货计提存货跌价准备。存货跌价准备期初余额为0。2×17年12月31日,长江公司存货中包括:150件甲产品和50件乙产品,单位产品成本均为120万元。其中,150件甲产品签订有不可撤销的销售合同,每件
Onedaywhileagirlwaswalkinginthewoodsshefoundtwostarvingsongbirds.Shetookthemhomeandputtheminasmall【C11】_
某小区内业主共有的道路被物业公司划出停车位对外出租,其收益应该归________所有。
根据下面材料回答下列题。调查中被采访者有362人.那么都赞成者的人数比都不赞成者人数多()人。
Whatistheauthor’sattitudetowardsthe"popularbelief"mentionedinPara.1?Teachersencouragetheearlyuseofdictionarie
Dependingonwhichplayeryouask,the"Fevernova"ballthatsportsequipmentmakerAdidassaysprovidestheultimatesoccerexp
最新回复
(
0
)